首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Photosystem I particles prepared from spinach chloroplast using Triton X-100 were frozen in the dark with the bound iron-sulphur Centre A reduced. Illumination at cryogenic temperatures of such samples demonstrated the photoreduction of the second bound iron-sulphur Centre B. Due to electron spin-electron spin interaction between these two bound iron-sulphur centres, it was not possible to quantify amounts of Centre B relative to the other components of the Photosystem I reaction centre by simulating the line-shape of its EPR spectrum. However, by deleting the free radical signal I from the EPR spectra of reduced Centre A alone or both Centres A plus B reduced, it was possible to double integrate these spectra to demonstrate that Centre B is present in the Photosystem I reaction centre in amounts comparable to those of Centre A and thus also signal I (P-700) and X.Oxidation-reduction potential titrations confirmed that Centre A had Em ? ?550 mV, Centre B had Em ? ?585 mV. These results, and those presented for the photoreduction of Centre B, place Centre B before Centre A in the sequence of electron transport in Photosystem I particles at cryogenic temperatures. When both A and B are reduced, P-700 photooxidation is reversible at low temperature and coupled to the reduction of the component X. The change from irreversible to reversible P-700 photooxidation and the photoreduction of X showed the same potential dependence as the reduction of Centre B with Em ? ?585 mV, substantiating the identification of X as the primary electron acceptor of Photosystem I.  相似文献   

2.
The properties of Photosystem I iron-sulphur centres A and B from spinach and barley chloroplasts were investigated by electron paramagnetic resonance spectroscopy (EPR). Barley chloroplasts were shown to photoreduce significant amounts of centre B at cryogenic temperatures unlike those from spinach which only photoreduced centre A. Centre B in barley chloroplasts was also reduced by dithionite before centre A and the EPR spectrum of reduced centre B was obtained. Illumination of barley chloroplasts at 15 K where centre B was chemically reduced resulted in the reduction of centre A and the appearance of spectral features indicating interaction between the two reduced centres. The variation of behaviours of iron-sulphur centres A and B between species favours a scheme of electron flow for Photosystem I where either centre A or centre B act as parallel electron acceptors from the earlier acceptor X.  相似文献   

3.
Richard Malkin 《BBA》1984,764(1):63-69
Modification of chloroplast membranes with diazonium benzene sulfonate (DABS) leads to a loss of Photosystem I-dependent ferredoxin reduction but not methyl viologen reduction. EPR studies of DABS-modified membranes show no inhibition of P-700+ formation at cryogenic temperatures, but iron-sulfur Center A photoreduction is markedly inhibited. Iron-sulfur Center B photoreduction at physiological temperatures in DABS-modified membranes is also markedly inhibited and little Center B can be detected after dark chemical reduction. These results indicate DABS specifically modifies iron-sulfur Center B of the spinach chloroplast Photosystem I electron acceptor complex and that Center B is obligately required for the reduction of Center A at cryogenic temperatures. Possible electron transport pathways at physiological temperatures are also considered.  相似文献   

4.
An e.p.r. spectrum of the reduced form of the electron-transport component (X), thought to be the primary electron acceptor of Photosystem I, was obtained. By using line-shape simulations of this component and the free-radical e.p.r. signal I of the oxidized reaction-centre chlorophyll (P700), it was possible to determine the ratio of the number of electron spins to which these signals correspond in Photosystem-I particles under a variety of conditions. On illumination at cryogenic temperatures of Photosystem-I preparations, in which both bound iron-sulphur centres A and B were reduced, the measured ratio of free radical to component X varied between 1.04 and 2.23, with an average value of 1.54 +/- 0.18 where a Gaussian line-shape is assumed for the component-X signal in the simulation. The error in this measurement is estimated to be up to 50%. In a similar way component X and centre A of the bound iron-sulphur protein were quantified, the ratio between these two components varying between 1.26 and 0.61 with an average value of 0.75 +/- 0.06. These results indicate that the quantitative relationship, in terms of net electron spins, between centre A, component X and P700 is of the order to be expected if component X is indeed the primary electron acceptor in Photosystem I and a component of the photosynthetic electron-transport chain.  相似文献   

5.
《BBA》1987,890(2):160-168
Radiation inactivation studies on the functional size of electron-transport processes in the Photosystem I reaction-centre complex showed the following characteristics. (1) The molecular mass required for electron transport from P-700 to iron-sulphur centre A was below 40 kDa. (2) Independent inactivation of iron-sulphur centres A and B was observed indicating their location on separate polypeptides. (3) The molecular mass of the polypeptides containing iron-sulphur centres A and B were 5–10 kDa based on a linear electron-transfer chain or 15–20 and 5–10 kDa (centre B) based on a branched chain. (4) A reaction centre ‘core’ containing the electron carriers for electron transport from P-700 to iron-sulphur centre X was indicated. These observations are discussed in comparison to current ideas on the polypeptide composition of the Photosystem I reaction centre. It is concluded that the radiation inactivation technique did not measure the size of Photosystem I polypeptides binding chlorophyll accounting for the small overall target size. The observed functional size came mostly from inactivation of the iron-sulphur centres showing that they are located on separate polypeptides.  相似文献   

6.
The mathematical analysis described in the preceding paper (Biochim. Biophys. Acta (1977) 460, 65-75), in which the steady-state photooxidation of P-700 was compared with overall electron flux in Photosystem I chloroplast fragments, was applied to membrane fragments from the blue-gree alga Nostoc muscorum (Strain 7119) noted for their high activity of both Photosystem I and Photosystem II. The same analysis, which gave good agreement between the photooxidation of P-700 and the overall light-induced electron flux (measured as NADP+ reduction) in Photosystem I chloroplast fragments, revealed in the algal membrane fragments two P-700 components: one responding to high light intensity (P-700 HI), the photooxidation of which was in good agreement with the overall electron flux (measured as NADP+ reduction by reduced 2,6-dichlorophenolindophenol), and the other component responding to low light intensity (P-700 LI), the photooxidation of which was not correlated with the reduction of NADP+ by reduced 2,6-dichlorophenolindophenol.  相似文献   

7.
The "Triton Subchloroplast Fraction I" or "TSF-I particles" can be further fractionated into a cytochrome fraction and a P-700-containing fraction essentially free of cytochromes. The cytochrome complex contains cytochromes f and b6 in approx. equimolar amounts, and, in addition, also plastocyanin and one iron-sulfur protein, all in the bound state. Bound plastocyanin was characterized by EPR spectroscopy. The EPR spectrum of the bound iron-sulfur protein resembles that previously detected in Phostosystem I particles under highly reducing conditions at lower than -560 mV. The redox potential of P-700 in the cytochrome-free high-P-700 particles was measured to be +468 mV; those of cytochromes f and b6 are +345 and -140 mV, respectively. Among the four components present in the complex, only cytochrome f can be coupled to a Photosystem I particle and undergoes photooxidation. This coupled photooxidation is totoally inhibited by KCN and only partially inhibited by HgCl2. The similarity of the complex containing cytochromes f and b6, plastocyanin, and an iron-sulfur protein to complexes III and IV of the mitochondrial respiratory redox chain and a possible involvement of the complex in cyclic photophosphorylation are noted and discussed.  相似文献   

8.
The oxidation-reduction potential of the reaction-centre chlorophyll of Photosystem I (P700) in spinach chloroplasts was determined by using the ability of the reaction centre to photoreduce the bound ferredoxin and to photo-oxidize P700 on illumination at 20K as an indicator of the oxidation state of P700. This procedure shows that P700 is oxidized with Em (pH8.0)(mid-point redox potential at pH8.0)congruent to +375mV. Further oxidation of the chloroplast preparations by high concentrations of K3Fe(CN)6(10mM) in the presence of mediating dyes leads to the appearance of a large radical signal with an apparent Em congruent to +470mVA second, light-inducible, radical also appears over the same potential range. We propose that these signals are due to bulk chlorophyll oxidation and not, as was previously thought [Knaff & Malkin (1973) Arch. Biochem. Biophys. 159, 555-562], to reaction-centre oxidation. A number of optical techniques were used to determine Em of P700. Dual-wavelength spectroscopy (697-720nm) indicates Em congruent to +460-+480mV. The spectrum of the sample during the titration showed a large contribution to the signal by bulk chlorophyll oxidation, in agreement with the electron-paramagnetic-resonance results and those of Ke, Sugahara & Shaw [(1975) Biochim. Biophys. Acta 408, 12-25]. The light-induced absorbance change at 435 nm, usually attributed to P700, showed a potential dependence similar to that of bulk chlorophyll oxidation. Determination of Em of P700 on the basis of the appearance of the P700 signal in oxidized-versus-reduced difference spectra showed Em (pH8.0) congruent to +360mV. Measurements of the effect of potential on the irreversible photo-oxidation of P700 at 77K showed that P700 became oxidized in this potential range. We conclude that the reaction-centre chlorophyll of Photosystem I has Em (pH8.0) congruent to +375mV.  相似文献   

9.
The Photosystem I electron acceptor complex was characterized by optical flash photolysis and electron spin resonance (ESR) spectroscopy after treatment of a subchloroplast particle with lithium dodecyl sulfate (LDS). The following properties were observed after 60 s of incubation with 1% LDS followed by rapid freezing. (i) ESR centers A and B were not observed during or after illumination of the sample at 19 K, although the P-700+ radical at g = 2.0026 showed a large, reversible light-minus-dark difference signal. (ii) Center 'X', characterized by g factors of 2.08, 1.88 and 1.78, exhibited reversible photoreduction at 8 K in the absence of reduced centers A and B. (iii) The backreaction kinetics at 8 K between P-700, observed at g = 2.0026, and center X, observed at g = 1.78, was 0.30 s. (iv) The amplitudes of the reversible g = 2.0026 radical observed at 19 K and the 1.2 ms optical 698 nm transient observed at 298 K were diminished to the same extent when treated with 1% LDS at room temperature for periods of 1 and 45 min. We interpret the strict correlation between the properties and lifetimes of the optical P-700+ A2 reaction pair and the ESR P-700+ center X- reaction pair to indicate that signal A2 and center X represent the same iron-sulfur center in Photosystem I.  相似文献   

10.
Photosystem I particles from spinach were reduced by illumination at 77 K. Under these conditions the one-electrom transfer from P-700 resulted in a reduction of only one acceptor molecule of the reaction centre. The EPR signals at g=2.05, 1.94 and 1.86 were attributed to reduced centre A and the smaller signals at g=2.07, 1.92 and 1.89 to reduced centre B. Reduction of both centres by dithionite in the dark lead to signals at g=2.05, 1.99, 1.96, 1.94, 1.92 and 1.89. Thus, the features at g=2.07 and 1.86 disappeared and new signals at g=1.99 and 1.96 were observed. From the spectral changes it followed that the iron-sulphur centres A and B interact magnetically. Temperature dependent EPR spectra demonstrated a faster electron spin relaxation of centre A than of centre B. These conclusions were corroborated using microwave power saturation of the respective EPR signals. The saturation data of the fully reduced centres A and B could not be fitted using the saturation equation for a one-electron spin system. The magnetic interaction between the (4Fe-4S) CENTRes of the electron acceptors A and B resulted in saturation properties which are simular to those of the 2(4Fe-4S) ferredoxin from Clostridium pasteurianum. For centre X a high proportion of homogeneous broadening of the EPR lines was inferred from the inhomogeneity parameter (b=1.83). It was, therefore, concluded that centre X is most probably an anion radical of chlorophyll. From the low temperature necessary for observing the EPR signal of centre X followed that the drastic relaxation enhancement has to be attributed to a magnetic interaction of the anion radical with iron.  相似文献   

11.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15 degrees K in P-700-chlorophyll alpha-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300 degrees K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15 degrees K as well as at 300 degrees K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

12.
Alan J. Bearden  Richard Malkin 《BBA》1976,430(3):538-547
The extent of P-700 photooxidation at 18 °K has been followed in three different chloroplast preparations (unfractionated chloroplasts and two preparations enriched in Photosystem I). More than 90% of P-700+ formation in all preparations was eliminated by the addition of sodium dithionite at pH 10. Photoreduction of a bound chloroplast iron-sulfur protein was also decreased by at least 90% under similar conditions. Electron paramagnetic resonance spectra of the chloroplast preparations in the presence of dithionite showed chemical reduction of bound iron-sulfur protein under conditions where primary photochemistry is eliminated. These results indicate that P-700 photooxidation is concomitant with photoreduction of a bound iron-sulfur protein and that this iron-sulfur protein functions as the primary electron acceptor of Photosystem I.  相似文献   

13.
The properties of the component 'X' identified as the primary electron acceptor of Photosystem I in spinach was investigated by electron-paramagnetic-resonance spectroscopy and the complete spectrum obtained for the first time. Component 'X' has gx = 1.78, gy = 1.88 and gz = 2.08; it can be observed only at very low temperatures (8--13K) and high microwave powers. Component X was identified in Photosystem I particles prepared with the French press or with Triton X-100. In samples reduced with ascorbate, illumination at low temperatures results in the photo-oxidation of P700 and reduction of a bound iron-sulphur protein; this is irreversible at low temperature. In samples in which the iron-sulphur proteins are reduced by sodium dithionite, illumination at low temperature results in the oxidation of P700 and the reduction of component 'X'; this is reversible at low temperature. The light-induced P700 signal is the same size with either ascorbate or dithionite as reducing agent, showing that all of the P700 involved in reduction of bound ferredoxin also functions in the reduction of component 'X'.  相似文献   

14.
The Photosystem I acceptor system of a subchloroplast particle from spinach was investigated by optical and electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur proteins by urea/ferricyanide solution. The chemical analysis of iron and sulfur and the ESR properties of centers A, B and X are consistent with the participation of three iron-sulfur centers in Photosystem I. A differential decrease in centers A, B and X is observed under conditions that induce S2? →S0 conversion in the bound iron-sulfur proteins. Center B is shown to be the most susceptible, while center ‘X’ is the least susceptible component to oxidative denaturation. Stepwise inactivation experiments suggest that electron transport in Photosystem I does not occur sequentially from X→B→A, since there is quantitative photoreduction of center A in the absence of center B. We propose that center A is directly reduced by X; thus, X may serve as a branch point for parallel electron flow through centers A and B.  相似文献   

15.
Photooxidation of P700 at low temperatures in membrane fractions from the blue-green alga Chlorogloea fritschii may be coupled irreversibly to the reduction of a bound ferredoxin. If this ferredoxin is reduced before freezing, P700 photooxidation at low temperatures becomes reversible. This reversible photooxidation is coupled to the reduction of a component with an EPR signal at g = 2.08, 1.88 and 1.78. A complete spectrum of this component has been obtained for the first time. We propose that as in higher plants this component is the primary electron acceptor of Photosystem I, the bound ferredoxin is a secondary electron acceptor. Using 57Fe enriched preparations we have shown that the ERP signals attributed to the bound ferredoxin are due to iron containing centres. This experiment did not show the presence of iron in the primary electron acceptor.  相似文献   

16.
A 300 mus decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 mus actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375 +/- 10 mV (pH = 7.5). These data suggest the assignment of the 300-mus decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171-1174 (1971)).  相似文献   

17.
Photosystem I particles from spinach were reduced by illumination at 77 K. Under these conditions the one-electron transfer from P-700 resulted in a reduction of only one acceptor molecule of the reaction centre. The EPR signals at g = 2.05, 1.94 and 1.86 were attributed to reduced centre A and the smaller signals at g = 2.07, 1.92 and 1.89 to reduced centre B. Reduction of both centres by dithionite in the dark lead to signals at g = 2.05, 1.99, 1.96, 1.94, 1.92 and 1.89. Thus, the features at g = 2.07 and 1.86 disappeared and new signals at g = 1.99 and 1.96 were observed. From the spectral changes it followed that the iron-sulphur centres A and B interact magnetically. Temperature dependent EPR spectra demonstrated a faster electron spin relaxation of centre A than of centre B.

These conclusions were corroborated using microwave power saturation of the respective EPR signals. The saturation data of the fully reduced centres A and B could not be fitted using the saturation equation for a one-electron spin system. The magnetic interaction between the [4Fe-4S] centres of the electron acceptors A and B resulted in saturation properties which are similar to those of the 2[4Fe-4S] ferredoxin from Clostridium pasteurianum.

For centre X a high proportion of homogeneous broadening of the EPR lines was inferred from the inhomogeneity parameter (b = 1.83). It was, therefore, concluded that centre X is most probably an anion radical of chlorophyll. From the low temperature necessary for observing the EPR signal of centre X followed that the drastic relaxation enhancement has to be attributed to a magnetic interaction of the anion radical with iron.  相似文献   


18.
S. Izawa  R. Kraayenhof  E.K. Ruuge  D. Devault 《BBA》1973,314(3):328-339
Treatment of chloroplasts with high concentrations of KCN inhibits reactions which involve Photosystem I (e.g. electron transport from water or diaminodurene to methylviologen), but not those assumed to by-pass Photosystem I (e.g. electron transport from water to quinonediimides). The spectrophotometric experiments described in this paper showed that KCN inhibits the oxidation of cytochrome f by far-red light without blocking its reduction by red light. Both optical and EPR experiments indicated that KCN does not inhibit the photooxidation of P700 but markedly slows down the subsequent dark decay (reduction). Reduction of P700 by Photosystem II is prevented by KCN. It is concluded that KCN blocks electron transfer between cytochrome f and P700, i.e. the reaction step which is believed to be mediated by plastocyanin. In KCN-poisoned chloroplasts the slow dark reduction of P700 following photooxidation is greatly accelerated by reduced 2,6-dichlorophenolindophenol or by reduced N-methylphenazonium methosulfate (PMS), but not by diaminodurene. It appears that the reduced indophenol dye and reduced PMS are capable of donating electrons directly to P700, at least partially by-passing the KCN block.  相似文献   

19.
The EPR characteristics of oxygen evolving particles prepared from Phormidium laminosum are described. These particles are enriched in Photosystem II allowing EPR investigation of signals which were previously small or masked by those from Photosystem I in other preparations. EPR signals from a Signal II species and high potential cytochrome beta-559 appear as they are photooxidised at cryogenic temperatures by Photosystem II. The Signal II species is a donor close to the Photosystem II reaction centre and may represent part of the charge accumulation system of water oxidation. An EPR signal from an iron-sulphur centre which may represent an unidentified component of photosynthetic electron transport is also described. The properties of the oxygen evolving particles show that the preparation is superior to chloroplasts or unfractionated alga membranes for the study of Photosystem II with a functional water oxidation system.  相似文献   

20.
Alan J. Bearden  Richard Malkin 《BBA》1972,283(3):456-468
Quantitative electron paramagnetic resonance studies of the primary event associated with Photosystem I in chloroplasts have been carried out at 25 °K. After illumination of either whole chloroplasts or Photosystem I subchloroplast fragments (D-144) with 715-nm actinic light at 25 °K, equal spin concentrations of oxidized P700 and reduced bound iron-sulfur protein (bound ferredoxin) have been measured. Quantitative determination of the concentration of these two carriers by EPR spectroscopy after illumination at low temperature indicates that Photosystem I fragments are enriched in P700 and the bound iron-sulfur protein as compared with unfractionated chloroplasts. These results indicate that P700 and the bound iron-sulfur protein function as the donor-acceptor complex of chloroplast Photosystem I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号