首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer–dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.  相似文献   

2.
AimsThe present study was conducted to understand the role of 1,2-dilynoleoyl-sn-glycero-3-phosphocholine (DLPhtCho) in cognitive functions.Main methodsTwo-electrode voltage-clamp was made to Xenopus oocytes expressing rat α7 acetylcholine (ACh) receptors. Field excitatory postsynaptic potentials (fEPSPs) were monitored from the CA1 region of rat hippocampal slices. Water maze test was carried out to assess spatial learning and memory for rats.Key findingsIn the oocyte expression system, DLPhtCho at a concentration of 10 µM potentiated ACh-evoked currents to approximately 190% of basal amplitudes 70 min after 10-min treatment. In contrast, 1-stearoyl-2-lynoleoyl-sn-glycero-3-phosphocholine (SLPhtCho), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPhtCho), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPhtCho) had no effect on the currents. DLPhtCho (10 µM) enhanced slope of fEPSPs to about 150% of basal levels at 70-min treatment, that is inhibited by α-bungarotoxin, an inhibitor of α7 ACh receptors, while no enhancement was obtained with SLPhtCho, PLPhtCho, or POPhtCho. In the water maze test, oral administration with DLPhtCho (5 mg/kg) significantly shortened the prolonged acquisition latency for rats intraperitoneally injected with scopolamine (1 mg/kg).SignificanceThe results of the present study show that DLPhtCho improves scopolamine-induced learning and memory deficits, possibly by facilitating hippocampal synaptic transmission under the control of α7 ACh receptors. DLPhtCho, therefore, could be developed as a beneficial anti-dementia drug.  相似文献   

3.
The α7 nicotinic acetylcholine receptor (nAChR), assembled as homomeric pentameric ligand-gated ion channels, is one of the most abundant nAChR subtypes in the brain. Despite its importance in memory, learning and cognition, no structure has been determined for the α7 nAChR TM domain, a target for allosteric modulators. Using solution state NMR, we determined the structure of the human α7 nAChR TM domain (PDB ID: 2MAW) and demonstrated that the α7 TM domain formed functional channels in Xenopus oocytes. We identified the associated binding sites for the anesthetics halothane and ketamine; the former cannot sensitively inhibit α7 function, but the latter can. The α7 TM domain folds into the expected four-helical bundle motif, but the intra-subunit cavity at the extracellular end of the α7 TM domain is smaller than the equivalent cavity in the α4β2 nAChRs (PDB IDs: 2LLY; 2LM2). Neither drug binds to the extracellular end of the α7 TM domain, but two halothane molecules or one ketamine molecule binds to the intracellular end of the α7 TM domain. Halothane and ketamine binding sites are partially overlapped. Ketamine, but not halothane, perturbed the α7 channel-gate residue L9′. Furthermore, halothane did not induce profound dynamics changes in the α7 channel as observed in α4β2. The study offers a novel high-resolution structure for the human α7 nAChR TM domain that is invaluable for developing α7-specific therapeutics. It also provides evidence to support the hypothesis: only when anesthetic binding perturbs the channel pore or alters the channel motion, can binding generate functional consequences.  相似文献   

4.
Neuronal nicotinic acetylcholine receptors (nAChRs) are Ca2+-permeable ligand-gated channels widely expressed in the central and peripheral nervous system. One of the most Ca2+ selective isoform is the homopentameric α7-nAChR implicated in schizophrenia. The activity of α7-nAChRs is usually recorded electrophysiologically, which limits the amount of information obtained. Here, we used fluorescence imaging to record Ca2+ transients associated with activation of the α7-nAChR in neuroblastoma cells stably expressing human α7-nAChRs. Application of nicotine (50 μM) consistently evoked transient (30 s), stereotyped Ca2+ responses that were inhibited by the selective α7-nAChRs antagonists methyllycaconitine (MLA) and α-bungarotoxin, and greatly increased and prolonged by the allosteric modulator PNU-120596 (1 μM). Unexpectedly, brief (1–5 s), repetitive Ca2+ transients of sub-micrometric dimension were observed in filopodia of cells expressing α7-nAChR. PNU-120596 increased the frequency and slowed the decay kinetics of these miniature Ca2+ elevations, which were insensitive to ryanodine, preserved during hyperpolarisation, and prevented by MLA, α-bungarotoxin, or Ca2+ removal. Global Ca2+ responses were also recorded in ganglion cells of embryo chicken retina during co-application of PNU-120596 and nicotine, together with whole-cell currents and brief current bursts. These data demonstrate that Ca2+ signals generated by α7-nAChRs can be recorded optically both in cell lines and in intact tissues. The possibility to image miniature Ca2+ signals enables to map the location of functional α7-nAChR channel clusters within cells and to analyze their single channel properties optically. Deciphering the rich pattern of intracellular Ca2+ signals generated by the activity of the α7-nAChRs will reveal the physiological role of these receptor-channels.  相似文献   

5.
Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be Kpiperine?=?5.7 ± .2 × 105 M?1 and Kpiperine = 9.3± .25 × 104 M?1 which correspond to the free energy of ?7.8 and ?6.71 kcal M?1at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA–piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA–piperine complex reaches equilibration state at around 3 ns, which prove that the HSA–piperine complex is stable in nature.  相似文献   

6.
Chitosan is a naturally occurring deacetylated derivative of chitin with versatile biological activities. Here, we studied the interaction of chitosan oligomers with low degree of polymerization such as chitosan monomer (CM), chitosan dimer (CD), and chitosan trimer (CT) with human serum albumin (HSA) a major blood carrier protein and α-1-glycoprotein (AGP). Since, HSA and AGP are the two important plasma proteins that determine the drug disposition and affect the fate of distribution of drugs. Fluorescence emission spectra indicated that CM, CD, and CT had binding constants of KCM = 6.2 ± .01 × 105 M?1, KCD = 5.0 ± .01 × 104 M?1, and KCT = 1.6 ± .01 × 106 M?1, respectively, suggesting strong binding with HSA. However, binding of chitooligomers with AGP was insignificant. Thermodynamic and molecular docking analysis indicated that hydrogen bonds and also hydrophobic interaction played an important role in stabilizing the HSA-chitooligomer complexes with free energies of ?7.87, ?6.35, and ?8.4?Kcal/mol for CM, CD, and CT, respectively. Further, circular dichroism studies indicated a minor unfolding of HSA secondary structure, upon interaction with chitooligomers, which are supported with fluctuations of root mean square deviation (RMSD) and radius of gyration (Rg) of HSA. Docking analysis revealed that all three chitooligomers were bound to HSA within subdomain IIA (Site I). In addition, RMSD and Rg analysis depicted that HSA-chitooligomer complexes stabilized at around 4.5 ns. These results suggest that HSA might serve as a carrier in delivering chitooligomers to target tissues than AGP which has pharmacological importance.  相似文献   

7.
8.
Transgalactosylation of chitobiose and chitotriose employing -galactosidase from bovine testes yielded mixtures with 1-3 linked galactose (type I) and 1-4 linked galactose (type II) in a final ratio of 1:1 for the tri- and 1:1.4 for the tetrasaccharide. After 24 h incubations of the two purified oligosaccharide mixtures with large amounts (20-fold increase compared with standard conditions) of human 1, 3/4-fucosyltransferase III (FucT III), the type I tri-/tetrasaccharides were completely converted to the Lewisa structure, whereas approximately 10% fucosylation of the type II isomers to the Lewisx oligosaccharides was observed in long-term incubations.Employing large amounts of human 1, 3-fucosyltransferase VI (FucT VI), the type I trisaccharide substrate was exclusively fucosylated at the proximal O-4 substituted N-acetylglucosamine (GlcNAc) (20%) whereas almost all of the type II isomers was converted to the corresponding Lewisx product. 45% of the type I tetrasaccharide was fucosylated at the second GlcNAc solely by FucT VI. The type II isomer was almost completely 1-3 fucosylated to yield the Lewisx derivative with traces of a structure that contained an additional fucose at the reducing GlcNAc. The results obtained in the present study employing high amounts of enzyme confirmed our previous results that FucT III acts preponderantly as a 1-4 fucosyltransferase onto GlcNAc in vitro. Human FucT VI attaches fucose exclusively in an 1-3 linkage to 4-substituted GlcNAc in vitro and does not modify any 3-substituted GlcNAc to yield Lewisa oligosaccharides. With 8-methoxycarbonyloctyl glycoside acceptors used under standard conditions, FucT III acts exclusively on the type I and FucT VI only on the type II derivative. With lacto-N-tetraose, lacto-N-fucopentraose I, or LS-tetrasaccharide as substrates, FucT III modified the 3-substituted GlcNAc and the reducing glucose; FucT VI recognized only lacto-N-neotetraose as a substrate.  相似文献   

9.
Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 104 M?1, KUmb-2 = 7 ± .01 × 104 M?1, which corresponds to ?6.1 and ?6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 103 M?1 and KUmb-2-AGP = 4.6 ± .01 × 103 M?1. Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster’s theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1–HSA and Umb-2–HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives.  相似文献   

10.
Chronic inflammation, mediated in large part by proinflammatory macrophage populations, contributes directly to the induction and perpetuation of metabolic diseases, including obesity, insulin resistance and type 2 diabetes. Polyunsaturated fatty acids (PUFAs) can have profound effects on inflammation through the formation of bioactive oxygenated metabolites called oxylipins. The objective of this study was to determine if exposure to the dietary omega-3 PUFA α-linolenic acid (ALA) can dampen the inflammatory properties of classically activated (M1-like) macrophages derived from the human THP-1 cell line and to examine the accompanying alterations in oxylipin secretion. We find that ALA treatment leads to a reduction in lipopolysaccharide (LPS)-induced interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production. Although ALA is known to be converted to longer-chain PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), DHA oxylipins were reduced overall by ALA treatment, as was LPS-induced secretion of EPA oxylipins. In contrast, we observed profound increases in oxylipins directly derived from ALA. Lipoxygenase products of linoleic acid were also dramatically increased, and LPS-induced production of AA oxylipins, particularly prostaglandin D2, was reduced. These results suggest that ALA may act to dampen the inflammatory phenotype of M1-like macrophages by a unique set of mechanisms distinct from those used by the long-chain omega-3 fatty acids EPA and DHA. Thus, there is strong rationale for investigating the functions of ALA oxylipins and lesser-known LA oxylipins since they hold promise as anti-inflammatory agents.  相似文献   

11.
Increased IFN-α signaling is a heritable risk factor for systemic lupus erythematosus (SLE). IFN induced with helicase C domain 1 (IFIH1) is a cytoplasmic dsRNA sensor that activates IFN-α pathway signaling. We studied the impact of the autoimmune-disease-associated IFIH1 rs1990760 (A946T) single nucleotide polymorphism upon IFN-α signaling in SLE patients in vivo. We studied 563 SLE patients (278 African-American, 179 European-American, and 106 Hispanic-American). Logistic regression models were used to detect genetic associations with autoantibody traits, and multiple linear regression was used to analyze IFN-α-induced gene expression in PBMCs in the context of serum IFN-α in the same blood sample. We found that the rs1990760 T allele was associated with anti-dsDNA Abs across all of the studied ancestral backgrounds (meta-analysis odds ratio = 1.34, p = 0.026). This allele also was associated with lower serum IFN-α levels in subjects who had anti-dsDNA Abs (p = 0.0026). When we studied simultaneous serum and PBMC samples from SLE patients, we found that the IFIH1 rs1990760 T allele was associated with increased IFN-induced gene expression in PBMCs in response to a given amount of serum IFN-α in anti-dsDNA-positive patients. This effect was independent of the STAT4 genotype, which modulates sensitivity to IFN-α in a similar way. Thus, the IFIH1 rs1990760 T allele was associated with dsDNA Abs, and in patients with anti-dsDNA Abs this risk allele increased sensitivity to IFN-α signaling. These studies suggest a role for the IFIH1 risk allele in SLE in vivo.  相似文献   

12.
This study described the three-dimensional shoulder motion during the arm elevation in individuals with isolated acromioclavicular osteoarthritis (ACO) and ACO associated with rotator cuff disease (RCD), as compared to controls. Seventy-four participants (ACO = 23, ACO + RCD = 25, Controls = 26) took part of this study. Disability was assessed with the DASH, three-dimensional kinematics were collected during arm elevation in the sagittal and scapular planes, and pain was assessed with the 11-point numeric pain rating scale. For each kinematic variable and demographic variables, separate linear mixed-model 2-way ANOVAs were performed to compare groups. Both ACO groups had higher DASH and pain scores. At the scapulothoracic joint, the isolated ACO group had greater internal rotation than control, and the ACO + RCD group had greater upward rotation than both other groups. At the sternoclavicular joint, both groups with ACO had less retraction, and the isolated ACO group had less elevation and posterior rotation. At the acromioclavicular joint, the isolated ACO group had greater upward rotation, and both ACO groups had greater posterior tilting. Patients with ACO had altered shoulder kinematics, which may represent compensatory responses to reduce pain and facilitate arm motion during arm elevation and lowering.  相似文献   

13.
Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) is an E3 ubiquitin ligase that interacts with and negatively regulates the epithelial Na+ channel (ENaC). The WW domains of Nedd4-1 bind to the ENaC subunits via recognition of PY motifs. Human Nedd4-1 (hNedd4-1) contains four WW domains with the third domain (WW3*) showing the strongest affinity to the PY motif. To understand the mechanism underlying this binding affinity, we have carried out NMR structural and dynamics analyses of the hNedd4-1 WW3* domain in complex with a peptide comprising the C-terminal tail of the human ENaC α-subunit. The structure reveals that the peptide interacts in a similar manner to other WW domain–ENaC peptide structures. Crucial interactions that likely provide binding affinity are the broad XP groove facilitating additional contacts between the WW3* domain and the peptide, compared to similar complexes, and the large surface area buried (83 Å2) between R430 (WW3*) and L647′ (αENaC). This corroborates the model-free analysis of the 15N backbone relaxation data, which showed that R430 is the most rigid residue in the domain (S2 = 0.90 ± 0.01). Carr–Purcell–Meiboom–Gill relaxation dispersion analysis identified two different conformational exchange processes on the μs–ms time-scale. One of these processes involves residues located at the peptide binding interface, suggesting conformational exchange may play a role in peptide recognition. Thus, both structural and dynamic features of the complex appear to define the high binding affinity. The results should aid interpretation of biochemical data and modeling interfaces between Nedd4-1 and other interacting proteins.  相似文献   

14.
15.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. The early changes in DN are characterized by an increased in kidney size, glomerular volume, and kidney function, followed by the accumulation of glomerular extracellular matrix, increased urinary albumin excretion (UAE), glomerular sclerosis, and tubular fibrosis. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats. In the present study, we examined the beneficial effects of RSV on DN and explored the possible mechanism of RSV action.Male Sprague–Dawley rats were injected with streptozotocin at 65 mg/kg body weight. The induction of diabetes mellitus (DM) was confirmed by a fasting plasma glucose level ≥300 mg/dL and symptoms of polyphagia and polydipsia. The DM rats were treated with or without RSV at 0.75 mg/kg body weight 3 times a day for 8 weeks. Animals were sacrificed and kidney histology was examined by microscopy. Urinary albumin excretion, glomerular hypertrophy and expressions of fibronectin, collagen IV, and TGF-β in the glomeruli were alleviated in RSV-treated DM rats, but not in untreated DM rats. In addition, RSV treatment reduced the thickness of the glomerular basement membrane (GBM) to the original thickness and increased nephrin expressions to normal levels in DM rats. Moreover, RSV inhibited phosphorylation of smad2, smad3 and ERK1/2 in diabetic rat kidneys. This is the first report showing that RSV alleviates early glomerulosclerosis in DN through TGF-β/smad and ERK1/2 inhibition. In addition, podocyte injuries of diabetic kidneys are lessened by RSV.  相似文献   

16.
Complexes of α1-antitrypsin with trypsin, α-chymotrypsin, and human leukocyte elastase were purified and examined for amino-terminal sequences. These complexes were shown to possess the expected N-terminal sequences for α1-antitrypsin and the corresponding enzymes; no newly generated amino groups could be detected. Each of these three complexes was dissociated at pH 10, and the inhibitor component was isolated. When the latter was subjected to sodium dodecyl sulfate gel electrophoresis a single band was obtained in all cases, and its molecular weight was judged to be 45 000 compared to 52 000 for α1-antitrypsin. Examination of the N-terminal sequence of these modified inhibitors, however, disclosed the presence of two molecular species with different N-termini. The predominant species had the N-terminal sequence previously reported for post-complex α1-antitrypsin (Johnson, D. and Travis, J. (1978) J. Biol. Chem. 253, 7142–7144) and the same carboxyl sequence as α1-antitrypsin. Present in lesser amounts was a species which had retained the same N-terminal sequence as α1-antitrypsin, but of which the C-terminus was resistant to the action of carboxypeptidases A and B. From these results it is concluded that (1) α1-antitrypsin is a double-headed inhibitor with identical but overlapping binding sites; (2) binding of the enzyme may occur at one of these two sites but not at both simultaneously, and (3) peptide cleavage does not occur as a consequence of the binding process but can be demonstrated only if the complex is dissociated.  相似文献   

17.
GM (grey matter) changes of thalamus and basal ganglia have been demonstrated to be involved in AD (Alzheimer''s disease). Moreover, the increase of a specific EEG (electroencephalogram) marker, α3/α2, have been associated with AD-converters subjects with MCI (mild cognitive impairment). To study the association of prognostic EEG markers with specific GM changes of thalamus and basal ganglia in subjects with MCI to detect biomarkers (morpho-physiological) early predictive of AD and non-AD dementia. Seventy-four adult subjects with MCI underwent EEG recording and high-resolution 3D MRI (three-dimensional magnetic resonance imaging). The α3/α2 ratio was computed for each subject. Three groups were obtained according to increasing tertile values of α3/α2 ratio. GM density differences between groups were investigated using a VBM (voxel-based morphometry) technique. Subjects with higher α3/α2 ratios when compared with subjects with lower and middle α3/α2 ratios showed minor atrophy in the ventral stream of basal ganglia (head of caudate nuclei and accumbens nuclei bilaterally) and of the pulvinar nuclei in the thalamus; The integrated analysis of EEG and morpho-structural markers could be useful in the comprehension of anatomo-physiological underpinning of the MCI entity.  相似文献   

18.
19.
The α4 integrin subunit associates with β7 and β1 and plays important roles in immune function and cell trafficking. The gut-homing receptor α4β7 has been recently described as a new receptor for HIV. Here, we describe polymorphisms of ITGA4 gene in New World primates (NWP), and tested their impact on the binding to monoclonal antibodies, natural ligands (MAdCAM and VCAM), and several gp120 HIV-1 envelope proteins. Genomic DNA of NWP specimens comprising all genera of the group had their exons 5 and 6 (encoding the region of binding to the ligands studied) analyzed. The polymorphisms found were introduced into an ITGA4 cDNA clone encoding the human α4 subunit. Mutant α4 proteins were co-expressed with β7 and were tested for binding of mAbs, MAdCAM, VCAM and gp120 of HIV-1, which was compared to the wild-type (human) α4. Mutant α4 proteins harboring the K201E/I/N substitution had reduced binding of all ligands tested, including HIV-1 gp120 envelopes. The mAbs found with reduced biding included one from which a clinically-approved drug for the treatment of neurological disorders has been derived. α4 polymorphisms in other primate species may influence outcomes in the development and treatment of infectious and autoimmune diseases in humans and in non-human primates.  相似文献   

20.
Alzheimer’s disease (AD) can incur significant health care costs to the patient, their families, and society; furthermore, effective treatments are limited, as the mechanisms of AD are not fully understood. This study utilized twelve adult male tree shrews (TS), which were randomly divided into PBS and amyloidbetapeptide1-40 (Aβ1-40) groups. AD model was established via an intracerebroventricular (icv) injection of Aβ1-40 after being incubated for 4 days at 37 °C. Behavioral, pathophysiological and molecular changes were evaluated by hippocampal-dependent tasks, magnetic resonance imaging (MRI), silver staining, hematoxylin–eosin (HE) staining, TUNEL assay and gene sequencing, respectively. At 4 weeks post-injection, as compared with the PBS group, in Aβ1-40 injected animals: cognitive impairments happened, and the hippocampus had atrophied indicated by MRI findings; meanwhile, HE staining showed the cells of the CA3 and DG were significantly thinner and smaller. The average number of cells in the DG, but not the CA3, was also significantly reduced; furthermore, silver staining revealed neurotic plaques and neurofibrillary tangles (NFTs) in the hippocampi; TUNEL assay showed many cells exhibited apoptosis, which was associated with downregulated BCL-2/BCL-XL-associated death promoter (Bad), inhibitor of apoptosis protein (IAP), Cytochrome c (CytC) and upregulated tumor necrosis factor receptor 1 (TNF-R1); lastly, gene sequencing reported a total of 924 mobilized genes, among which 13 of the downregulated and 19 of the upregulated genes were common to the AD pathway. The present study not only established AD models in TS, but also reported on the underlying mechanism involved in neuronal apoptosis associated with multiple gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号