首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three experimental trials have been carried out on the basil (Ocimum basilicum)–downy mildew (Peronospora belbahrii) pathosystem, under phytotron conditions, to evaluate the effect of simulated elevated atmospheric CO2 concentrations and temperatures as well as that of their interaction. Six CO2 and temperature combinations were tested to establish their effect on disease development. The photosynthetic efficiency (PI) and chlorophyll content index (CCI) of the basil plants were monitored throughout the trials. Average disease incidence was 43.8% under standard conditions (18–22°C and 400–450 ppm of CO2), while average disease severity was 22.1%. In the same temperature regime, a doubled level of CO2 caused a significant increase in both disease incidence and severity. When temperatures ranged between 18 and 26°C, CO2 at 800–850 ppm increased disease incidence. At the highest temperatures tested, that is at 26–30°C, which are not favourable for downy mildew development, the increase in CO2 had no significant effect on disease incidence. A decreasing trend of PI was observed for the PI values of the inoculated plants. This trend was particularly pronounced for high CO2 levels at the end of the experiment. In the same way as for disease development, lower values were recorded for the inoculated plants at the end of the experiment at 18–22°C for both CO2 concentrations and at 22–26°C for 850 ppm of CO2. The non‐inoculated plants showed higher photosynthetic efficiency than the inoculated plants. Similar trends were also observed for the CCI, thus confirming that downy mildew incidence and severity, which in particular caused foliar damage at high CO2 concentrations, led to a decrease in the physiological performances.  相似文献   

2.
Investigations were conducted under greenhouse and field conditions to evaluate the effects of potential biocontrol agents (BCAs) and soluble silicon (Si) on powdery mildew of zucchini caused by Podosphaera xanthii. Five BCAs were applied as foliar sprays to zucchini leaves and Si was drenched weekly into the rhizosphere of these plants.In the greenhouse, all BCAs provided significant control of powdery mildew with fungal isolates, reducing disease levels by up to 90%. Si alone reduced powdery mildew by as much as 35% and improved the efficacy of most of the biocontrol agents. Higher disease pressure reduced the efficacy of Si on powdery mildew but did not affect the performance of the BCAs. In the field, a disease reduction of 10–70% was achieved by BCAs and Si. Lower temperatures and high humidity ranges were suitable for optimal performances. The efficacy of the bacterial BCA, Serratia marcescens – B15 and silicon diminished at temperatures above 25 °C. The fungal BCAs (Clonostachys rosea – EH and Trichothecium roseum – H20) were better suited to higher temperatures (25–30 °C) and were tolerant of low RH values. Application of K2SiO2 to zucchini roots increased the level of Si in the leaves, which was responsible for suppression of the disease.  相似文献   

3.
In two experiments, winter wheat (Triticum aestivum cv. Cerco) was grown in 350 (ambient) and 700 μmol mol-1 (elevated) atmospheric CO2 concentrations. In the first experiment, plants were grown at five levels of nitrogen fertilization, and in the second experiment, plants were grown at three levels of water supply. All plants were infected with powdery mildew, caused by the fungus Erysiphe graminis. Plants grown in elevated atmospheric CO2 concentrations had significantly reduced % shoot nitrogen contents and significantly increased % shoot water contents. At elevated atmospheric CO2 concentrations, where plant nitrogen content was significantly reduced, the severity of mildew infection was significantly reduced, and where host water content was significantly increased, the severity of mildew infection was significantly increased. In a moderate water supply treatment, the plants grown in elevated atmospheric CO2 concentrations had significantly reduced nitrogen contents (9·9%) and significantly increased water content (4%), the amount of mildew infection was unchanged. The severity of mildew infection appeared to be more sensitive to host water content than to host nitrogen content.  相似文献   

4.
This study was carried out to evaluate the culture filtrates of certain bio-agents (Epicoccum nigrum, Epicoccum minitans, Epicoccum sp., Trichoderma harzianum, Trichoderma viride and Bacillus pumilus) alone and mixed with penconazole against powdery mildew in okra. The results showed that the culture filtrate of E. nigrum induced the highest efficacy against powdery mildew relative to other treatments in both tested seasons. Moreover, culture filtrate of E.nigrum mixed with the tested fungicide gave higher efficiency against powdery mildew than use of the fungicide alone. The efficacy of the tested culture filtrates against powdery mildew due to the presence of different antifungal compounds identified by (GC–MS) analysis. This study suggests the ability of using the culture filtrates of the tested bio-agents as alternative of fungicides to control powdery mildew in okra. Furthermore, the results implied the possibility to minimise the use of fungicides by mixing with the microbial culture filtrates.  相似文献   

5.
6.
When tomato leaves were sprayed with 0.1% emulsified canola oil, corn oil, grape seed oil, peanut oil, safflower oil, soya bean oil or sunflower oil, the severity of powdery mildew caused by Oidium neolycopersici was greatly reduced. Among these edible oils tested, sunflower oil was the most effective in the control of powdery mildew. When sprayed with 0.5% sunflower oil, powdery mildew on tomato leaves was reduced to a negligible level. Sunflower oil applied to halves of upper leaf surface did not induce resistance against the pathogen in the non‐treated halves. When applied to halves of lower leaf surface, it also failed to reduce the severity of powdery mildew on the upper leaf surface right above the treated area indicating that control of the powdery mildew by sunflower oil did not result from activation of host defence mechanisms. Scanning electron microscopy showed that control of powdery mildew with sunflower oil resulted mainly from the inhibition of conidial germination and suppression of mycelial growth of the pathogen.  相似文献   

7.
A total of forty eight accessions of barley landraces from Morocco were screened for resistance to powdery mildew. Twenty two (46%) of tested landraces showed resistance reactions and thirty four single plant lines were selected. Eleven of these lines were tested in seedling stage with seventeen and another twenty three lines with twenty three isolates of powdery mildew respectively. The isolates were chosen according to the virulence spectra observed on the ‘Pallas’ isolines differential set. Line 229–2–2 was identified with resistance to all prevalent in Europe powdery mildew virulence genes. Lines 230–1–1, 248–1–3 showed susceptible reaction for only one and lines 221–3–2, 227–1–1, 244–3–4 for only two isolates respectively. Three different resistance alleles (Mlat, Mla6, and MLA14) were postulated to be present in tested lines alone or in combination. In thirty (88%) tested lines it was impossible to determine which specific gene or genes for resistance were present. Most probably these lines possessed alleles not represented in the ‘Pallas’ isolines differential set. The distribution of reaction type indicated that about 71% of all reaction types observed were classified as powdery mildew resistance (scores 0, 1 and 2). Majority (79%) of resistance reaction types observed in tested lines was intermediate resistance reaction type two and twenty three lines (68%) showed this reaction for inoculation with more than 50% isolates used. The use of new effective sources of resistance from Moroccan barley landraces for diversification of resistance genes for powdery mildew in barley cultivars was discussed.  相似文献   

8.
Plant responses to elevated CO2 and temperature have been much studied in recent years, but effects of climate change on pathological responses are largerly unknown. The pathosystems grapevine (Vitis vinifera) - downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necatrix) were chosen as models to assess the potential impact of increased CO2 and temperature on disease incidence and severity under controlled environment. Grapevine potted plants were grown in phytotrons under 4 different simulated climatic conditions: (1) standard temperature (ranging from 18 degrees to 22 degrees C) and standard CO2 concentration (450 ppm); (2) standard temperature and elevated CO2 concentration (800 ppm); (3) elevated temperature (ranging from 22 degrees to 26 degrees C, 4 degrees C higher than standard) and standard CO2 concentration; (4) elevated temperature and CO2 concentration. Each plant was inoculated with a spore suspension containing 5x10(5) cfu/ml. Disease index and physiological parameters (chlorophyll content, fluorescence, assimilation rate) were assessed. Results showed an increase of the chlorophyll content with higher temperatures and CO2 concentration, to which consequently corresponded an higher fluorescence index. Disease incidence of downy mildew increased when both CO2 and temperatures were higher, while an increase in CO2 did not influenced powdery mildew incidence, probably due to the increased photosynthetic activity of plants under such conditions. Considering that the rising concentrations of CO2 and other greenhouse gases will lead to an increase in global temperature and longer seasons, we can assume that this will allow more time for pathogens evolution and could increase pathogen survival, indirectly affecting downy and powdery mildews of grapevine.  相似文献   

9.
Field experiments showed that the treatment of winter barley with microbial metabolites produced by a Bacillus subtilis strain led to increased yields in spite of a remaining mildew infection. Disease severity/yield relations obtained on a single tiller basis for either mildew infection at EC 75 or area under disease progress curve (AUDPC) were negatively correlated for untreated plants (R2= 89%, 94%) while this relation did not exist for inducer-treated ones (R2= 10%, 13%). Despite an increasing infection density. yields of main tillers of inducertreated plants were not decreased. On the other hand area under green leaf area curve (AUGLAC) showed a higher correlation with grain yield (R2= 89%) of inducer-treated plants. Possible explanations for the mitigated damaging effect of powdery mildew were expected in carbohydrate metabolism. especially carbohydrate formation and translocation. Assimilation rates of flag leaves of inducer-treated barley with similar infection densities to those of untreated plants were increased over a prolonged period and even exceeded those of non infected ones. In inducer-treated plants the export of 14CO2 from flag leaves into ears remained unimpaired by mildew infection and the allocation of assimilates to grains was highest at late stages of grain filling. Obviously plants were stimulated by inducer treatments to compensate for the damaging effect of powdery mildew and to tolerate mildew infection without yield loss.  相似文献   

10.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major fungal disease in common wheat (Triticum aestivum L.) worldwide. The Chinese winter wheat cultivar Lumai 21 has shown good and stable adult plant resistance for 19 years. The aim of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 200 F3 lines from the cross Lumai 21/Jingshuang 16. The population was tested for powdery mildew reaction in Beijing and Anyang in the 2005–2006 and 2006–2007 cropping seasons, providing data for 4 environments. A total of 1,375 simple sequence repeat (SSR) markers were screened for associations with powdery mildew reactions, initially in bulked segregant analysis. Based on the mean disease values averaged across environments, broad-sense heritabilities of maximum disease severity and area under the disease progress curve were 0.96 and 0.77, respectively. Three QTLs for adult plant resistance were detected by inclusive composite interval mapping. These were designated QPm.caas-2BS, QPm.caas-2BL and QPm.caas-2DL, respectively, and explained from 5.4 to 20.6% of the phenotypic variance across environments. QPm.caas-2BS and QPm.caas-2DL were likely new adult plant resistance QTLs flanked by SSR markers Xbarc98Xbarc1147 and Xwmc18Xcfd233, respectively. These markers could be useful for improving wheat powdery mildew resistance in breeding programs.  相似文献   

11.
A 3‐year field trial was conducted using established apple cv. Crown Gold and English oak (Quercus robur L.) to assess the efficacy of eight fungicides applied via microcapsule trunk injection against the foliar pathogens apple scab (Venturia inaequalis) and powdery mildew (Phyllactinia sp). In both apple cv. Crown Gold and English oak, the fungicide myclobutanil was not taken up when microcapsules were inserted into the tree vascular system at the root flare. Disease severity in injected trees, excluding myclobutanil, was lower over the following two growing seasons compared to water‐injected controls indicating seven of the eight fungicides used in this study provided a significant degree of protection against scab and powdery mildew infection. A difference in the magnitude of pathogen control achieved was recorded between fungicides. Of the fungicides tested, penconazole, pyrifenox and carbendazim significantly reduced disease severity and significantly increased leaf chlorophyll (Fv/Fm) and SPAD values as a measure of tree vitality and chlorophyll content, respectively, in both apple cv. Crown Gold and English oak over two growing seasons after microcapsule injection. Based on the results of this investigation, it is suggested that these three fungicides be used in preference to thiabendazole, fosetyl‐aluminium, triadimefon and propiconazole for the control of apple scab and powdery mildew where outbreaks of these foliar pathogens are problematic.  相似文献   

12.
Powdery mildew, caused by Golovinomyces orontii and Podosphaera xanthii, is a widespread disease that causes important losses in cucurbit production. To determine the aetiology and the epidemiology of cucurbit powdery mildew disease in the North of Italy, observations on the occurrence of the main disease‐causing fungal species were conducted during the 2010, 2011 and 2012 growing seasons. Samples of infected leaves of zucchini, melon and pumpkin plants, either from field or greenhouse crops, were collected every 15–18 days from May to September/October. To identify the fungal species, both morphological observations based on the asexual stage and molecular identifications by a Multiplex‐PCR reaction with species‐specific primers were performed. Climatic parameters of temperature and relative humidity were also monitored. Pearson's correlation coefficient and Principal Component Analysis showed a negative significant correlation between the two species, and a peculiar epidemiological behaviour was also observed: the earlier infections were caused by G. orontii, which was the predominant species till the end of June–middle of July. At this time, this species progressively decreased in frequency and was replaced by P. xanthii that became the main species infecting cucurbits till the end of the growing season. As the two species have different ecological requirements, these seasonal variations in the cucurbit powdery mildew species composition could possibly be explained by the influence of temperature and relative humidity on the pathogen epidemiology during the growing season but also by the different overwintering strategies adopted by the two species.  相似文献   

13.
Two biocontrol preparations were tested for their ability to control Sphaerotheca fusca and Botrytis cinerea on greenhouse cucumber. Trichoderma harzianum T39 (TRICHODEX) spray reduced powdery mildew severity by up to 97% but its efficacy declined to 18–55% control as the epidemic progressed. Unlike on young leaves, on older leaves the control of powdery mildew by T. harzianum T39 was poor. Ampelomyces quisqualis (AQ10) was very effective against powdery mildew, achieving up to 98% of control. Its effectiveness declined with the progress of the epidemic but unlike the other biocontrol agent it retained significant control capability on older leaves. Two aliphatic petroleum distillate oil products improved the efficacy of both biocontrol agents. The co-application of T. harzianum T39 and A. quisqualis AQ10 was tested on cucumber plants infected with powdery mildew followed by fruit gray mold infection. It resulted in no improvement of the control of powdery mildew, and in an improvement of gray mold control, the latter probably because of the use of additive oil (ADDQ) along with the second biocontrol preparation. There was no significant interference between the biocontrol agents in the co-application treatment as compared with the application of each agent alone; the level of population of T. harzianum T39 remained similar and the parasitism of S. fusca by A. quisqualis was not nullified. The application of T. harzianum T39 to soil instead of spraying it resulted in 75–90% lower powdery mildew coverage on the leaves. It was concluded that the mode of action of T. harzianum T39 in powdery mildew control is induced resistance, not mycoparasitism or antibiotic action.  相似文献   

14.
In the present study, the hypothesis was tested as to whether silicon supplied via the nutrient solution is capable of enhancing the tolerance of hydroponically grown zucchini squash (Cucurbita pepo L. cv. ‘Rival’) to salinity and powdery mildew infections. Two experiments were conducted involving a low (2.2 dS m?1, 0.8 mM NaCl) and a high salinity level (6.2 dS m?1, 35 mM NaCl) in combination with a low (0.1 mM) and a high (1.0 mM) Si level in the nutrient solution supplied to the crop. The exposure of the plants to high external salinity restricted significantly the vegetative growth as well as the fruit yield of zucchini due to a reduction of both the number of fruits per plant and the mean fruit weight. However, the inclusion of 1 mM of Si in the salinized nutrient solution mitigated the salinity-associated suppression of both growth and yield. Part of the growth and fruit yield suppression at high salinity was due to restriction of net photosynthesis. The stomatal conductance was also restricted by salinity, whereas the substomatal CO2 concentration was not affected by the NaCl or Si treatments. The supply of 1 mM of Si via the nutrient solution mitigated the inhibitory effect of salinity on net photosynthesis and this effect was associated with lower Na and Cl translocation to the epigeous plant tissues. Furthermore, the supply of Si via the nutrient solution suppressed appreciably the expansion of a powdery mildew (Podosphaera xanthii) infection in the leaves at both salinity levels. These results indicate that the supply of at least 1 mM of Si via the nutrient solution is capable of enhancing both tolerance to salinity and resistance to powdery mildew in soilless cultivations of zucchini squash.  相似文献   

15.
Powdery mildew is one of the most important limiting factors for cucurbits production in Spain, its management being strongly dependent on chemicals. The aim of this work was to evaluate the possibility of exploiting antagonistic bacteria in the biological control of the cucurbit powdery mildew fungus Podosphaera fusca (syn. Sphaerotheca fusca). Among a collection of bacterial strains isolated from distinct cucurbit powdery mildew diseased plants and rhizospheric soils, four isolates were selected, by means of a screening method based on antibiotic production, and identified as Bacillus spp. These isolates proved to be efficacious in the control of cucurbit powdery mildew in in vitro detached leaves and seedling biocontrol assays, where reductions of disease severity of up to 80% were obtained. Furthermore, bacterial populations on melon leaves remained at similar levels (105 cfu cm–2) over the 16-day period studied and, as observed by scanning electron microscopy analysis, they were able to establish microcolonies associated with an extracellular matrix, which reveals that these isolates efficiently colonize melon phylloplane. These results indicate that the bacterial isolates selected are promising candidates for biological control agents of cucurbit powdery mildew in southern Spain.  相似文献   

16.
The impact of powdery (Uncinula necator) and downy mildew (Plasmopara viticola) on grapevine leaf gas exchange was analysed. Gas exchange measurements (assimilation A, transpiration E, stomatal conductance gs, intercellular concentration of CO2Ci) were made on three different leaf materials: (i) healthy tissue of diseased leaves, (ii) infected tissue of diseased leaves, (iii) healthy tissue of healthy leaves (control treatment). Using the same source of leaf tissue, photosynthetic pigment concentration (chlorophyll a, b) and fluorescence levels (minimal fluorescence F0, maximal fluorescence Fm and the optimal quantum yield [Fm ? F0]/Fm) were determined to explain the mechanism of action of the two diseases on leaf assimilation. The results indicated that powdery and downy mildew reduced the assimilation rates, not only through a reduction in green leaf area (visual lesions), but also through an influence on gas exchange of the remaining green leaf tissues, determining a ‘virtual lesion’. The ratios between virtual and visual lesions were higher in powdery mildewed leaves than in the downy mildewed leaves. The photosynthetic fluorescence level (Fv/Fm) was affected by neither of the two pathogens. The reduction in intercellular concentration of CO2 and photosynthetic pigment may explain the lower assimilation rates in the healthy tissues of powdery and downy mildewed leaves respectively.  相似文献   

17.
Human driven changes in the Earth's atmospheric composition are likely to alter plant disease in the future. We evaluated the effects of elevated carbon dioxide (CO2) and ozone (O3) on three economically important soybean diseases (downy mildew, Septoria brown spot and sudden death syndrome‐SDS) under natural field conditions at the soybean free air concentration enrichment (SoyFACE) facility. Disease incidence and/or severity were quantified from 2005 to 2007 using visual surveys and digital image analysis, and changes were related to microclimatic variability and to structural and chemical changes in soybean host plants. Changes in atmospheric composition altered disease expression, but responses of the three pathosystems varied considerably. Elevated CO2 alone or in combination with O3 significantly reduced downy mildew disease severity (measured as area under the disease progress curve‐AUDPC) by 39–66% across the 3 years of the study. In contrast, elevated CO2 alone or in combination with O3 significantly increased brown spot severity in all 3 years, but the increase was small in magnitude. When brown spot severity was assessed in relation to differences in canopy height induced by the atmospheric treatments, disease severity increased under combined elevated CO2 and O3 treatment in only one of the 3 years. The atmospheric treatments had no effect on the incidence of SDS or brown spot throughout the study. Higher precipitation during the 2006 growing season was associated with increased AUDPC severity across all treatments by 2.7 and 1.4 times for downy mildew and brown spot, respectively, compared with drought conditions in 2005. In the 2 years with similar precipitation, the higher daily temperatures in the late spring of 2007 were associated with increased severity of downy mildew and brown spot. Elevated CO2 and O3 induced changes in the soybean canopy density and leaf age likely contributed to the disease expression modifications.  相似文献   

18.
Factorial experiments in 1976–1979 investigated the effects of sowing date, fungicides (ethirimol seed treatments and tridemorph sprays) and insecticides (phorate applied to the soil, and menazon or dimethoate sprays) on powdery mildew, aphids, barley yellow dwarf virus (BYDV) and grain yield of spring barley (cv. Julia in 1976 and 1977; cv. Wing in 1978 and 1979). Late sowing usually increased the severity of powdery mildew, numbers of aphids and incidence of BYDV and generally decreased yield. Responses to pesticides were commonly greater on the late-sown than on the early-sown barley. Response to fungicides are principally attributed to the control of powdery mildew (Erysiphe graminis f. sp. hordei; the target species) but responses to insecticides cannot be attributed to virus control and seem unlikely to be due solely to control of aphids, whose numbers were relatively small. There were some effects of fungicides on aphids and insecticides on mildew, but they were inconsistent and too small to affect crop protection strategies.  相似文献   

19.
Silicon (Si) is one of the most beneficial microelements for several plants, in mediating the growth regulation in horticultural species. This research evaluated the effects of innovative Si-applications on. soilless-grown Cucumis sativus L. and Cucurbita pepo L. Crop growth, powdery mildew incidence and abiotic stress resistance were evaluated. Two experiments were carried out in a nonheated glasshouse on benches. Two new Si treatments (Si–Nanosponge complex, and one experimental fertilizer) were compared with the traditional K2SiO3. Topas® EC 10 was used as control fungicide treatment. Biometric parameters, and incidence and severity of powdery mildew were measured. Cucumis sativus plants showed a severe powdery mildew infection, and no significant effect of the Si treatments was found. Cucurbita pepo plants were initially grown under lower disease pressure conditions, and the positive effect of Si treatments was found. The innovative use of Si–Nanosponge complex and the new experimental fertilizer can be considered a good alternative to traditional compounds for plant growth stimulation.  相似文献   

20.
Detached mungbean (Vigna radiata L.Wilczek) leaves were inoculated with a conidial suspension of a local isolate (TI-1) of the powdery mildew pathogen (Erysiphe polygoni DC) under controlled environment conditions. Based on the latent period and severity of the infection, a rating scale of 0–5 was used to classify the host pathogen interactions. Reactions 0, 1 and 2 were considered resistant and referred to as R0, R1 and R2 while 3, 4 and 5 were classified as susceptible (S). RUM lines (resistant to powdery mildew) and their derivatives are crossed with several susceptible (reaction types 3–5) genotypes and the inheritance of the resistance was studied in the F1, F2 and F3 generations. The results showed that powdery mildew resistance in mungbean is governed by two dominant genes designated as Pm-1 and Pm-2. When both Pm-1 and Pm-2 were present, an R0 reaction was observed after inoculation with TI-1. The resistant reaction was R1 when only Pm-1 was present and R2 in the presence of Pm-2. In the absence of both Pm-1 and Pm-2, susceptible reactions 3, 4 and 5 were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号