首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log10-transformed protein-coding gene number (Y′) versus log10-transformed genome size (X′, genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y′ = ln(-46.200+22.678X′, whereas non-eukaryotes a linear model, Y′ = 0.045+0.977X′, both with high significance (p<0.001, R2>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%–1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%–47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3×106 kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245×106 kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.  相似文献   

2.
《Endocrine practice》2020,26(9):1031-1038
Objective: Intravenous and subcutaneous immunoglobulins are commonly used for immune substitution or as immune modulators in a variety of inflammatory and autoimmune disorders. Exogenous thyroid-specific thyroglobulin (Tg) antibodies present in the donor plasma may interfere with the interpretation of measurements of Tg autoantibodies (Tg-Abs) in the recipient’s plasma and potentially trigger an immune response in the recipient’s immune cells. Levels of antibodies causing bioassay interferences or those leading to clinically relevant changes in patient outcomes are not known. Tg is used as a biomarker in the long-term surveillance of patients with differentiated thyroid cancer (DTC) following total thyroidectomy and radioactive iodine ablation. However, the presence of Tg-Abs in the circulation interferes with Tg measurements. Assessment of levels of Tg-Abs is thus recommended as a part of standard follow-up of DTC together with Tg testing.Methods: To understand the potential mechanisms and pathophysiologic significance of possible interferences associated with administration immunoglobulin preparations and Tg measurement, we overview the current knowledge on interactions between Tg autoimmunity and immunoglobulin preparations and illustrate diagnostic challenges and perspectives for follow-up of patients with DTC treated with exogenous immunoglobulins.Results: In patients with DTC treated with immunoglobulin preparations, monitoring of thyroid cancer using Tg and Tg-Abs is challenging due to possible analytical interferences through passive transfer of exogenous antibodies from immunoglobulin preparations.Conclusion: Analytical interferences must be suspected when a discrepancy exists between clinical examination and diagnostic tests. Collaboration between endocrinologists, biologists, and pharmacologists is fundamental to avoid misdiagnosis and unnecessary medical or radiologic procedures.Abbreviations: CT = computed tomography; DTC = differentiated thyroid cancer; FNAB = fine-needle aspiration biopsy; HAb = heterophile antibody; IMA = immunometric assay; IVIg = intravenous immunoglobulin; RAI = radioactive iodine; RIA = radioimmunoassay; SCIg = subcutaneous immunoglobulin; Tg = thyroglobulin; Tg-Ab = thyroglobulin autoantibody; Tg-MS = thyroglobulin mass spectrometry; TPO-Ab = thyroid peroxidase autoantibody; TSHR-Ab = thyrotropin receptor autoantibody  相似文献   

3.
仿生模式识别在细菌基因组水平转移基因预测中的应用   总被引:1,自引:0,他引:1  
水平转移基因的预测对于生物进化过程的理解和物种之间遗传物质进行定性和定量的估计都有重要的意义.本文提出一种利用仿生模式识别原理来对细茵基因组水平转移基因进行预测的方法.仿生模式识别是基于同调连续性原理一特征空间中同类样本的连续性特性,强调用"认识"模式取代传统的模式"分类"与划分,它更接近于人类"认识"事物的特性.仿生模式识别理论已经成功应用于多镜头人脸身份确认,人脸识别,图像复原,语音识别等领域.我们采用超香肠神经元网络对水平转移基因进行识别,结果显示,仿生模式识别方法优于目前预测结果最好的八联核苷酸频率的打分算法,和基于支撑向量机的识别算法.特别是在对大肠杆菌(Eschefichia coli K12)基因组,识别率分别提高了42.3%和30.5%.  相似文献   

4.
随着各种生物基因组序列测定工作的完成,大量的DNA序列数据涌现出来,为研究在基因组中寻找水平转移基因提供了极大的便利.将基因序列特征分析和支持向量机技术结合起来,通过分析基因序列的特征差异发现水平转移基因.依据以前研究工作的基础,选取了绝对密码子使用频率(FCU)作为序列特征,主要因为它既包含了基因密码子使用偏性的信息,也包含了基因所编码蛋白的氨基酸组成信息,支持向量机利用这些信息进行水平转移基因分析和预测,可以提高预测的准确性.另外,提出了基于分链的水平转移基因预测新方法,即将细菌基因组前导链和滞后链上的基因区别对待,分别进行水平转移基因预测.结果显示,基本预测方法要优于目前预测结果最好的Tsirigos等提出的基于八联核苷酸频率的打分算法,命中率的相对提高率最高达31.47%,而基于分链的方法对水平转移基因的预测取得了更好的结果.  相似文献   

5.
DNA replication was recently shown to induce the formation of compositional skews in the genomes of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. In this work, I have characterized further GC and TA skew variations in the vicinity of S. cerevisiae replication origins and termination sites, and defined asymmetry indices for origin analysis and prediction. The presence of skew jumps at some termination sites in the S. cerevisiae genome was established. The majority of S. cerevisiae replication origins are marked by an oriented consensus sequence called ACS, but no evidence could be found for asymmetric origin firing that would be linked to ACS orientation. Asymmetry indices related to GC and TA skews were defined, and a global asymmetry index IGC,TA was described. IGC,TA was found to strongly correlate with origin efficiency in S. cerevisiae and to allow the determination of sets of intergenes significantly enriched in origin loci. The generalized use of asymmetry indices for origin prediction in naive genomes implies the determination of the direction of the skews, i.e. the identification of which strand, leading or lagging, is enriched in G and which one is enriched in T. Recent work indicates that in Candida albicans and in several related species, centromeres contain early and efficient replication origins. It has been proposed that the skew jumps observed at these positions would reflect the activity of these origins, thus allowing to determine the direction of the skews in these genomes. However, I show here that the skew jumps at C. albicans centromeres are not related to replication and that replication-associated GC and TA skews in C. albicans have in fact the opposite directions of what was proposed.  相似文献   

6.
Evidence Inconsistent with the Blaauw Model of Phototropism   总被引:4,自引:0,他引:4  
The Blaauw model of phototropism equates the inhibition of growthat the illuminated side of a unilaterally illuminated organwith the blue light inhibition of overall organ extension evidentwhen some shoots are exposed to uniform blue light However,a study of the growth responses of Avena coleoptiles exposedto omnilateral, equal bilateral, unequal bilateral and unilateralblue light has revealed some light induced growth rate changeswhich cannot be explained by the Blaauw model. The growth responsesof cells at the illuminated and shaded sides of phototropicallystimulated coleoptiles seem to depend on the existence of alight gradient across the whole organ rather than the absolutelevels of light at either side. Key words: Phototropism, Avena coleoptile, Blaauw hypothesis, Blue light, Growth inhibition  相似文献   

7.
Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments (“F-actin”). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1–LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1–LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1–lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses.  相似文献   

8.
胡婧  刘念  黄原 《昆虫分类学报》2006,28(2):153-160
在总结了68种节肢动物线粒体基因组的测序种类、基因组组成、结构及基因排序情况的基础上,特别对节肢动物线粒体基因组基因排列顺序数据进行了详细的分析。线粒体基因组基因排列顺序数据显示六足动物与甲壳动物之间相似,螯肢动物与多足动物相似,这个结果和以前Boore(1998)对节肢动物线粒体基因组顺序分析结果不同,却和核rRNA数据的分析结果一致。  相似文献   

9.
Integrative genomics predictors, which score highly in predicting bacterial essential genes, would be unfeasible in most species because the data sources are limited. We developed a universal approach and tool designated Geptop, based on orthology and phylogeny, to offer gene essentiality annotations. In a series of tests, our Geptop method yielded higher area under curve (AUC) scores in the receiver operating curves than the integrative approaches. In the ten-fold cross-validations among randomly upset samples, Geptop yielded an AUC of 0.918, and in the cross-organism predictions for 19 organisms Geptop yielded AUC scores between 0.569 and 0.959. A test applied to the very recently determined essential gene dataset from the Porphyromonas gingivalis, which belongs to a phylum different with all of the above 19 bacterial genomes, gave an AUC of 0.77. Therefore, Geptop can be applied to any bacterial species whose genome has been sequenced. Compared with the essential genes uniquely identified by the lethal screening, the essential genes predicted only by Gepop are associated with more protein-protein interactions, especially in the three bacteria with lower AUC scores (<0.7). This may further illustrate the reliability and feasibility of our method in some sense. The web server and standalone version of Geptop are available at http://cefg.uestc.edu.cn/geptop/ free of charge. The tool has been run on 968 bacterial genomes and the results are accessible at the website.  相似文献   

10.
The proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of microsporidian genomes have revealed a poor gene complement with highly reduced gene sizes. In the present paper, we investigated whether such gene sizes may have induced biases for the methodologies used for genome annotation, with an emphasis on small coding sequence (CDS) gene prediction. Using better delineated intergenic regions from four Encephalitozoon genomes, we predicted de novo new small CDSs with sizes ranging from 78 to 255 bp (median 168) and corroborated these predictions by RACE-PCR experiments in Encephalitozoon cuniculi. Most of the newly found genes are present in other distantly related microsporidian species, suggesting their biological relevance. The present study provides a better framework for annotating microsporidian genomes and to train and evaluate new computational methods dedicated at detecting ultra-small genes in various organisms.  相似文献   

11.
Beam CA  Himes M  Himelfarb J  Link C  Shaw K 《Genetics》1977,87(1):19-32
Genetic analysis of the homothallic dinoflagellate, Crypthecodinium cohnii, using 16 nonallelic motility mutants, revealed (1) virtual absence of second division segregation and (2) independent assortment of all genes except for: (a) three cases of cross specific, "false" linkage and (b) one possible case of linkage with a high percentage of crossing over. The probability that at least two of the 16 genes studied are on one of the approximately 50 (minimal) chromosomes is extremely high and, since recombination is observed between all pairs of markers, it is highly probable that some results from crossing over. This likelihood plus the observed absence of second division segregation and the significant number of two-celled zygotic cysts support the view that the "meiosis" of C. cohnii is a one-division process.  相似文献   

12.
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.  相似文献   

13.
Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60—all infecting a common bacterial host—provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.  相似文献   

14.
Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands “gene insulae” to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.  相似文献   

15.
基因组功能预测的进化印记方法   总被引:6,自引:1,他引:6  
改善基因组功能预测方案是目前功能基因组学的迫切问题,生物进化历程会在分子序列上留下相应进化印记-直系同源簇的特异模体,在这一生物学事实的基础上,提出了一个新的基因缚功能预测方法,首先利用进化分析方法构建直系同源簇,再找到各直系同源簇的功能模体,这样可以形成特异的功能模体库,未知基因的功能预测可望通过搜索该功能模体库而得以高效,准确地完成,对5个家族的检验初步证实该方案是可行的。  相似文献   

16.
In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP) datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L.) Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers'' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species.  相似文献   

17.
Recent advances in DNA sequencers are accelerating genome sequencing, especially in microbes, and complete and draft genomes from various species have been sequenced in rapid succession. Here, we present a comprehensive gene prediction tool, the MetaGeneAnnotator (MGA), which precisely predicts all kinds of prokaryotic genes from a single or a set of anonymous genomic sequences having a variety of lengths. The MGA integrates statistical models of prophage genes, in addition to those of bacterial and archaeal genes, and also uses a self-training model from input sequences for predictions. As a result, the MGA sensitively detects not only typical genes but also atypical genes, such as horizontally transferred and prophage genes in a prokaryotic genome. In this paper, we also propose a novel approach for analyzing the ribosomal binding site (RBS), which enables us to detect species-specific patterns of the RBSs. The MGA has the ingenious RBS model based on this approach, and precisely predicts translation starts of genes. The MGA also succeeds in improving prediction accuracies for short sequences by using the adapted RBS models (96% sensitivity and 93% specificity for 700 bp fragments). These features of the MGA expedite wide ranges of microbial genome studies, such as genome annotations and metagenome analyses.Key words: bioinformatics, gene-finding, prokaryote, phage, ribosomal binding site  相似文献   

18.
摘要:植物多药和有毒化合物排出家族(multidrug and toxic compound extrusion,MATE)是一类可转运毒素、金属离子、次级代谢产物的次级转运蛋白家族。该家族主要在植物的解毒机制中发挥作用,部分成员也参与植物的形态建成过程。MATE家族在烟草基因组中的数量、特征及功能目前尚未开展系统分析。本研究利用生物信息学方法对普通烟草(Nicotiana tabacum)基因组中的MATE基因进行了预测分析,共预测到131个基因,分为4个亚家族。亚家族3在进化树中形成较为独立的分枝,其跨膜区数量、亚细胞定位、保守结构域方面与其他亚家族不同。转录组数据显示,相当一部分MATE家族基因在所有组织中低量表达。GO功能注释结果表明该家族成员主要作为一种转运体,在应激响应、生物调控等过程中发挥作用。本研究为烟草及其他植物中MATE家族的鉴定和功能研究提供了数据基础。  相似文献   

19.
Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG''s regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.  相似文献   

20.
A combination of cultivation-based methods with a molecular biological approach was used to investigate whether planktonic bacteria with identical 16S rRNA gene sequences can represent distinct eco- and genotypes. A set of 11 strains of Brevundimonas alba were isolated from a bacterial freshwater community by conventional plating or by using a liquid most-probable-number (MPN) dilution series. These strains had identical 16S rRNA gene sequences and represented the dominant phylotype in the plateable fraction, as well as in the highest positive dilutions of the MPN series. However, internally transcribed spacer and enterobacterial repetitive intergenic consensus PCR fingerprinting analyses, as well as DNA-DNA hybridization analyses, revealed great genetic diversity among the 11 strains. Each strain utilized a specific combination of 59 carbon substrates, and the niche overlap indices were low, suggesting that each strain occupied a different ecological niche. In dialysis cultures incubated in situ, each strain had a different growth rate and cell yield. We thus demonstrated that the B. alba strains represent distinct populations with genetically determined adaptations and probably occupy different ecological niches. Our results have implications for assessment of the diversity and biogeography of bacteria and increase the perception of natural diversity beyond the level of 16S rRNA gene sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号