首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of morphology》2017,278(10):1438-1449
Ovaries of Acipenser baerii are of an alimentary type and probably are meroistic. They contain ovarian nests, individual follicles, inner germinal ovarian epithelium, and fat tissue. Nests comprise cystoblasts, germline cysts, numerous early previtellogenic oocytes, and somatic cells. Cysts are composed of cystocytes, which are connected by intercellular bridges and are in the pachytene stage of the first meiotic prophase. They contain bivalents, finely granular, medium electron dense material, and nucleoli in the nucleoplasm. Many cystocytes degenerate. Oocytes differ in size and structure. Most oocytes are in the pachytene and early diplotene stages and are referred to as the PACH oocytes. Oocytes in more advanced diplotene stage are referred to as the DIP oocytes. Nuclei in the PACH oocytes contain bivalents and irregularly shaped accumulation of DNA (DNA‐body), most probably corresponding to the rDNA‐body. The DNA‐body is composed of loose, fine granular material, and comprises multiple nucleoli. At peripheries, it is fragmented into blocks that remain in contact with the inner nuclear membrane. In the ooplasm, there is the rough endoplasmic reticulum, Golgi complexes, free ribosomes, complexes of mitochondria with cement, fine fibrillar material containing granules, and lipid droplets. The organelles and material of nuclear origin form a distinct accumulation (a granular ooplasm) in the vicinity of the nucleus. Some of the PACH oocytes are surrounded by flat somatic cells. There are lampbrush chromosomes and multiple nucleoli present (early diplotene stage) in the nucleoplasm. These PACH oocytes and neighboring somatic cells have initiated the formation of ovarian follicles. The remaining PACH oocytes transform to the DIP oocytes. The DIP oocytes contain lampbrush chromosomes and a DNA‐body is absent in nuclei. Multiple nucleoli are numerous in the nucleoplasm and granular ooplasm is present at the vegetal region of the oocyte.  相似文献   

2.
The skeleton of the jaws and neurocranium of sturgeons (Acipenseridae) are connected only through the hyoid arch. This arrangement allows considerable protrusion and retraction of the jaws and is highly specialized among ray‐finned fishes (Actinopterygii). To better understand the unique morphology and the evolution of the jaw apparatus in Acipenseridae, we investigated the development of the muscles of the mandibular and hyoid arches of the Siberian sturgeon, Acipenser baerii. We used a combination of antibody staining and formalin‐induced fluorescence of tissues imaged with confocal microscopy and subsequent three‐dimensional reconstruction. These data were analyzed to address the identity of previously controversial and newly discovered muscle portions. Our results indicate that the anlagen of the muscles in A. baerii develop similarly to those of other actinopterygians, although they differ by not differentiating into distinct muscles. This is exemplified by the subpartitioning of the m. adductor mandibulae as well as the massive m. protractor hyomandibulae, for which we found a previously undescribed portion in each. The importance of paedomorphosis for the evolution of Acipenseriformes has been discussed before and our results indicate that the muscles of the mandibular and the hyoid may be another example for heterochronic evolution.  相似文献   

3.
Eleven of 34 sturgeons caught in the River Volga classified morphologically as Acipenser gueldenstaedtii were identified as Acipenser baerii from sequence analysis of the mitochondrial cytochrome- b gene. The Caspian Sea and its tributaries including the Volga are not native habitats of A. baerii . No A. baerii haplotype was observed in A. gueldenstaedtii from the Sea of Azov or the South Caspian Sea. Genetic contamination of A. gueldenstaedtii with A. baerii or A. baerii hybrids has occurred in the Volga. Crosses and backcrosses of these specimens with native A. gueldenstaedtii resulted in the loss of the morphological diagnostic A. baerii features. These findings are of special concern for conservation and management programmes, as well as for specimen identification for caviar trading control.  相似文献   

4.
《Journal of morphology》2017,278(11):1586-1597
In a study aiming to improve knowledge on the mineralization of the axial skeleton in reared Siberian sturgeon (Acipenser baerii Brandt, 1869), we discovered a new mineralized tissue within the notochord. To our knowledge, such a structure has never been reported in any vertebrate species with the exception of the pathological mineralization of the notochord remains in degenerative intervertebral disks of mammals. Here, we describe this enigmatic tissue using X‐ray microtomography, histological analyses and solid state NMR‐spectroscopy. We also performed a 1‐year monitoring of the mineral content (MC) of the notochord in relation with seasonal variations of temperature. In all specimens studied from 2‐year‐old juveniles onwards, this mineralized structure was found within a particular region of the notochord called funiculus . This feature first appears in the abdominal region then extends posteriorly with ageing, while the notochord MC also increases. The mineral phase is mainly composed of amorphous calcium phosphate, a small amount of which changes into hydroxyapatite with ageing. The putative role of this structure is discussed as either a store of minerals available for the phosphocalcic metabolism, or a mechanical support in a species with a poorly mineralized axial skeleton. A pathological feature putatively related to rearing conditions is also discussed.  相似文献   

5.
《Journal of morphology》2017,278(3):418-442
The head is considered the major novelty of the vertebrates and directly linked to their evolutionary success. Its form and development as well as its function, for example in feeding, is of major interest for evolutionary biologists. In this study, we describe the skeletal development of the cranium and pectoral girdle in Siberian (Acipenser baerii ) and Russian sturgeon (A. gueldenstaedtii ), two species that are commonly farmed in aquaculture and increasingly important in developmental studies. This study comprises the development of the neuro‐, viscero‐ and dermatocranium and the dermal and chondral components of the pectoral girdle, from first condensation of chondrocytes in prehatchlings to the early juvenile stage and reveals a clear pattern in formation. The otic capsules, the parachordal cartilages, and the trabeculae cranii are the first centers of chondrification, at 8.4mm TL. These are followed by the mandibular, then the hyoid, and later the branchial arches. Teeth form early on the dentary, dermopalatine, and palatopterygoid, and then appear later in the buccal cavity as dorsal and ventral toothplates. With ongoing chondrification in the neurocranium a capsule around the brain and a strong rostrum are formed. Dermal ossifications start to form before closure of the dorsal neurocranial fenestrae. Perichondral ossification of cartilage bones occurs much later in ontogeny. Our results contribute data bearing on the homology of elements such as the lateral rostral canal bone that we regard homologous to the antorbital of other actinopterygians based on its sequence of formation, position and form. We further raise doubts on the homology of the posterior ceratobranchial among Actinopteri based on the formation of the hyoid arch elements. We also investigate the basibranchials and the closely associated unidentified gill‐arch elements and show that they are not homologous. J. Morphol. 278:418–442, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Apelin is a peptide, mainly produced in the brain, which participates in several physiologic effects. However, knowledge about the mechanism of appetite regulation in teleosts, including the role of apelin is not well understood. The aim of this study is to explore the effect of feeding status on the expression of apelin mRNA in the whole brain and the effects of injection of apelin on food intake in Siberian sturgeon (Acipenser baerii). In this study, we first cloned the apelin cDNA sequence of the Siberian sturgeon. We obtained a 1046-bp cDNA fragment, including a 237-bp open reading frame (ORF) that encoded 78 amino acids. Apelin was widely distributed in 11 tissues related to feeding regulation, with the highest expression in thewhole brain, followed by the spleen and trunk kidney. In addition, we measured the effects of periprandial (preprandial and postprandial) change, fasting and re-feeding on apelin mRNA expression in whole brain. The level of apelin mRNA was significantly decreased 1 h after feeding. The results of the fasting experiment showed that the expression of apelin mRNA in the brain was significantly reduced after 1 day of fasting but consistently increased throughout the 15-day food deprivation period. When the 15-day fasted fish were re-fed, apelin mRNA expression in the brain was significantly increased as compared to that of the control. These results suggest that apelin may play a bidirectional role in the regulation of food intake in the Siberian sturgeon. In order to further examine the effect of apelin on feeding regulation in Siberian sturgeons, acute and chronic intraperitoneal (i.p.) injection experiments were performed and food intakes were recorded. Results showed that acute i.p. injection of apelin-13 reduced food intake, however, chronic i.p. injection apelin-13 increased the food intake for 7 days in Siberian sturgeons. In conclusion, our results show that apelin has a bidirectional effect on feeding regulation in Siberian sturgeons by acting as a satiety factor in short-term feeding regulation and a starvation factor in long-term feeding regulation.  相似文献   

7.
Most natural populations of Eurasian sturgeons have declined dramatically during recent decades, reaching historic low levels today. During the same period, sturgeon has become very popular in European aquaculture. Because many hatcheries are located near rivers, their unintentional escape is often documented, especially during floods. Until now, no cases of successful hybridization of these escaped fish with wild stocks have been reported. In this study, the genetic structure of a highly threatened population of sterlets (Acipenser ruthenus) from the Upper Danube was analysed as a requirement for their conservation. Surprisingly, we observed genotypes and morphotypes of Siberian sturgeon (Acipenser baerii), as well as hybrids between this species and native sterlets. This hybridization poses a serious threat for the survival of this isolated sterlet population in the upper part of the Danube. For the first time, natural reproduction is documented for Siberian sturgeon outside their natural range in Europe. This finding demonstrates the risk of extinction by hybridisation of endangered populations. We would like to stress that taking into consideration the risks for native sturgeon populations, farmed sturgeon should not be released into the wild, and all measures should be taken to prevent their accidental escape.  相似文献   

8.
9.
Resistin as an adipokine identified from rodents in 2001 is involved in many biological processes. However, little is known about this gene in fish. We cloned Siberian sturgeon (Acipenser baerii) resistin cDNA of 795 base pairs, encoding 107 amino acids, which showed 38–40% identity to human and rodents. Real-time quantitative PCR showed that the resistin gene was widely distributed in tissues of Siberian sturgeon, with the highest expression in liver. After fasting for 1, 3, 6 and 10 days, the expression of the resistin gene in the liver of Siberian sturgeon decreased significantly, and after refeeding on the 10 days of fasting the resistin mRNA expression increased rapidly, suggesting that resistin may play an important role in liver in response to starvation. Taken together, these results suggest that resistin may be involved in the regulation of energy homeostasis in liver.  相似文献   

10.
Movement characteristics of golden hamster spermatozoa were studied upon collection from the cauda epididymis, during an incubation which capacitates the spermatozoa in vitro, during penetration of the cumulus, and during attachment to and penetration of the zona pellucida. High-speed videomicrography was employed to quantitate flagellar beat frequency and shape. The status of the acrosome was also assessed. During capacitation, hamster spermatozoa become increasingly invigorated before the onset of hyperactivated motility. Within the cumulus, beat frequency and curvature are reduced, apparently in response to the physical resistive properties of the matrix material. These properties appear to vary within the cumulus. Initial attachment to the zona precedes completion of the acrosome reaction, is non-rigid, and is accompanied by increased beat frequency and curvature. Subsequently, the onset of rigid binding to the zona, completion of the acrosome reaction, and increased flagellar beat frequency are very closely associated in time. The latter produces an increase in thrust against the zona. Preliminary results indicate that ensuing zona penetration requires not more than five minutes, is at oblique angles, and is associated with a continuation of vigorous flagellar beating.  相似文献   

11.
12.
The aim of this study was to investigate the changes in hepatic oxidative phosphorylation (OXPHOS) complexes (COs) in patients and cows with non‐alcoholic steatohepatitis (NASH) and to investigate the mechanism that links mitochondrial dysfunction and hepatic insulin resistance induced by non‐esterified fatty acids (NEFAs). Patients and cows with NASH displayed high blood NEFAs, TNF‐α and IL‐6 concentrations, mitochondrial dysfunction and insulin resistance. The protein levels of peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), mitofusin‐2 (Mfn‐2) and OXPHOS complexes (human: COI and COIII; cow: COI‐IV) were significantly decreased in patients and cows with NASH. NEFA treatment significantly impaired mitochondrial function and, increased reactive oxygen species (ROS) production, and excessive ROS overactivated the JNK and p38MAPK pathways and induced insulin resistance in cow hepatocytes. PGC‐1α and Mfn‐2 overexpression significantly decreased the NEFA‐induced ROS production and TNF‐α and IL‐6 mRNA expressions, reversed the inhibitory effect of NEFAs on mitochondrial function and attenuated the overactivation of the ROS‐JNK/p38MAPK pathway, alleviated insulin resistance induced by NEFAs in cow hepatocytes and HepG2 cells. These findings indicate that NEFAs induce mitochondrial dysfunction and insulin resistance mediated by the ROS‐JNK/p38MAPK pathway. PGC‐1α or Mfn‐2 overexpression reversed the lipotoxicity of NEFAs on mitochondrial dysfunction and insulin resistance. Our study clarified the mechanism that links hepatic mitochondrial dysfunction and insulin resistance in NASH.  相似文献   

13.
Fatty acids are shown to be important in various skin functions. Fatty acid binding protein (FABP) is postulated to serve as a lipid shuttle, solubilizing hydrophobic fatty acids and delivering them to the appropriate metabolic system. Among the FABP family proteins, epidermal-type FABP (E-FABP) is solely expressed in keratinocyte but its specific role in skin is not yet fully established. We found an elevated expression of E-FABP in regenerative keratinocytes of healing wounds. However, E-FABP null mice showed no marked differences compared to wild type mice in the process of wound closure, in vivo. On the other hand, in keratinocyte culture, E-FABP gene disruption decreased the cell motility, but did not affect the cell proliferation. E-FABP deletion may be compensated for in vivo by the microenvironment comprised of various cells such as fibroblasts and endothelial cells around the wound. Our analyses suggest that the E-FABP elevation may be necessary for the activation of cell motility within regenerative epidermis during wound healing.  相似文献   

14.
Diabetes normally causes lipid accumulation and oxidative stress in the kidneys, which plays a critical role in the onset of diabetic nephropathy; however, the mechanism by which dysregulated fatty acid metabolism increases lipid and reactive oxygen species (ROS) formation in the diabetic kidney is not clear. As succinate is remarkably increased in the diabetic kidney, and accumulation of succinate suppresses mitochondrial fatty acid oxidation and increases ROS formation, we hypothesized that succinate might play a role in inducing lipid and ROS accumulation in the diabetic kidney. Here we demonstrate a novel mechanism by which diabetes induces lipid and ROS accumulation in the kidney of diabetic animals. We show that enhanced oxidation of dicarboxylic acids by peroxisomes leads to lipid and ROS accumulation in the kidney of diabetic mice via the metabolite succinate. Furthermore, specific suppression of peroxisomal β-oxidation improved diabetes-induced nephropathy by reducing succinate generation and attenuating lipid and ROS accumulation in the kidneys of the diabetic mice. We suggest that peroxisome-generated succinate acts as a pathological molecule inducing lipid and ROS accumulation in kidney, and that specifically targeting peroxisomal β-oxidation might be an effective strategy in treating diabetic nephropathy and related metabolic disorders.  相似文献   

15.
Heart-type fatty acid-binding protein (H-FABP) is a major fatty acid-binding factor in skeletal muscles. Genetic lack of H-FABP severely impairs the esterification and oxidation of exogenous fatty acids in soleus muscles isolated from chow-fed mice (CHOW-solei) and high fat diet-fed mice (HFD-solei), and prevents the HFD-induced accumulation of muscle triacylglycerols (TAGs). Here, we examined the impact of H-FABP deficiency on the relationship between fatty acid utilization and glucose oxidation. Glucose oxidation was measured in isolated soleus muscles in the presence or absence of 1 mM palmitate (simple protocol) or in the absence of fatty acid after preincubation with 1 mM palmitate (complex protocol). With the simple protocol, the mutation slightly reduced glucose oxidation in CHOW-muscles, but markedly increased it in HFD-muscles; unexpectedly, this pattern was not altered by the addition of palmitate, which reduced glucose oxidation in both CHOW- and HFD-solei irrespective of the mutation. In the complex protocol, the mutation first inhibited the synthesis and accumulation of TAGs and then their mobilization; with this protocol, the mutation increased glucose oxidation in both CHOW- and HFD-solei. We conclude: (i) H-FABP mediates a non-acute inhibition of muscle glucose oxidation by fatty acids, likely by enabling both the accumulation and mobilization of a critical mass of muscle TAGs; (ii) H-FABP does not mediate the acute inhibitory effect of extracellular fatty acids on muscle glucose oxidation; (iii) H-FABP affects muscle glucose oxidation in opposing ways, with inhibition prevailing at high muscle TAG contents.  相似文献   

16.
17.
Adjustments to CHO cell physiology were recently observed during implementation of a Raman spectroscopy-based glucose and lactate control strategy. To further understand how these cells, under monoclonal antibody (mAb) production conditions, utilized the extra lactic acid fed, we performed a comprehensive semi-quantitative and time-dependent analysis of the exometabolome. This study focused on the CHO cell's metabolic shift from the fifth day of culture. We compared relative levels of extracellular metabolites in the absence or presence of a 2 g/L lactic acid setpoint while glucose was kept at 4 g/L. Our hypothesis is that extra lactic acid would supply more pyruvate, favoring oxidative phosphorylation. We subsequentially uncovered several carnitine derivatives as biomarkers of the simultaneous activation of TCA anaplerotic pathways as well as a carbon-buffering pathway. CHO cells exhibited a balance between intermediates from (i) amino acid catabolism, (ii) fatty acid β-oxidation, and (iii) pyruvate from glycolysis and lactic acid; and the secretion of their intermediate carnitine derivatives. In addition, 3-hydroxy-methyl-glutaric acid (HMG) and mevalonate syntheses were found as biomarkers of alternative acyl group removal. Together, under a limited capacity to assimilate the surplus of acyl-CoA groups as well as an ability to maintain the acyl-CoA: free CoA ratio for proper and continuous functioning of the TCA cycle, CHO cells activate the carnitine-buffering system, HMG, and mevalonate pathways.  相似文献   

18.
19.
Protein kinase C (PKC) is a ubiquitous enzyme family implicated in the regulation of a large number of short- and long-term intracellular processes. It is hypothesized that modulation of PKC activity may represent, at least in part, a functional link between mutations (genotype) that lead to the pathological accumulation of naturally occurring compounds that affect PKC activity and perturbation of PKC-mediated substrate phosphorylation and cellular function in the corresponding diseases (phenotype). This model provides a unifying putative mechanism by which the phenotypic expression of some inborn errors of metabolism may be explained. Recent studies in a cell-free system of human skin fibroblasts support the hypothesis that alteration of PKC activity may represent the functional link between accumulation of sphingolipids and fatty acyl-CoA esters, and perturbation of cell function in sphingolipidoses and fatty acid oxidation defects, respectively. Further studies will elucidate the effects of these alterations on PKC-mediated short- and long-term cellular functions in these diseases, as well as the possible role of PKC in the pathogensis of other diseases. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The role of salicylic acid (SA) in events occurring before cell death during the hypersensitive reaction (HR) was investigated in leaves of wild-type tobacco Samsun NN and in transgenic lines expressing salicylate hydroxylase (35S-SH-L). Challenge of 35S-SH-L tobacco with avirulent strains of Pseudomonas syringae gave rise to symptoms resembling those normally associated with a compatible response to virulent strains in terms of visible phenotype, kinetics of bacterial multiplication, and escape from the infection site. Compared with responses in wild-type tobacco, both the onset of plant cell death and the induction of an active oxygen species-responsive promoter (AoPR1-GUS) were delayed following challenge of 35S-SH-L plants with avirulent bacteria. The oxidative burst occurring after challenge with avirulent bacteria was visualized histochemically and quantified in situ. H2O2 accumulation at reaction sites was evident within 1 h after inoculation in wild-type tobacco, whereas in 35S-SH-L plants the onset of H2O2 accumulation was delayed by 2-3 h. The delay in H2O2 generation was correlated with a reduction in the transient rise in SA that usually occurred within 1-2 h following inoculation in wild-type plants. Our data indicate that an early transient rise in SA potentiates the oxidative burst, with resultant effects on accumulation of H2O2, plant cell death and also defence-gene induction, factors that together may determine the outcome of plant-pathogen interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号