首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Grey mould, caused by the fungus Botrytis cinerea Pers ex Fr., is a very destructive and important disease worldwide. Fluazinam is a phenylpyridinamine fungicide with broad‐spectrum activities. The baseline sensitivity of B. cinerea to fluazinam is yet to be established in Henan Province, China. In this study, a total of 117 field isolates of B. cinerea were collected from 49 commercial greenhouses in different locations of Henan Province, in 2016, and the sensitivities of these isolates to fluazinam were determined based on mycelial growth. The effective concentration for 50% (EC50) values ranged from 0.0038 to 0.0441 μg/ml, and the mean EC50 value was 0.0201 ± 0.0081 μg/ml for mycelial growth. The frequency distribution range presented a unimodal curve. To define the cross‐resistance relationships, the linear correlation coefficients of the EC50 values between fluazinam and carbendazim, procymidone, pyrimethanil or boscalid were analysed. The results showed that no correlation was observed between fluazinam and the other tested fungicides. These results provide important information to growers for the prevention and control of grey mould.  相似文献   

2.
This study assessed the fenhexamid sensitivity of 143 Botrytis cinerea isolates collected from greenhouse strawberries in five regions of China between 2012 and 2013, and identified four isolates with moderate levels of resistance: two from the Xinjiang Uygur Autonomous Region and two from Hebei Province. The baseline fenhexamid sensitivity of B. cinerea exhibited a unimodal distribution with a mean EC50 value of 0.20 ± 0.10 μg/ml (SD). The EC50 values of the fenhexamid‐resistant isolates ranged from 0.05 to 0.40 μg/ml. Molecular analysis of the fenhexamid target gene erg27 revealed that the resistant isolates collected from Xinjiang (163‐6 and 163‐22) contained three mutations that led to amino acid changes (V365A, E368D and A378T) known to be associated with fenhexamid resistance, but that the isolates from Hebei lacked any mutations, indicating that an alternative mechanism could be responsible for their resistance. Most of the biological characteristics of the fenhexamid‐resistant isolates, such as mycelial growth, sclerotia production and pathogenicity, did not significantly differ from those of the sensitive ones ( .05), but it was noted that some of the resistant isolates exhibited reduced rates of sporulation and spore germination. In addition, the resistant isolates exhibited lower osmotic sensitivity than the sensitive ones. The study found no evidence of cross‐resistance with other fungicides, but that there was negative cross‐resistance with procymidone, iprodione, carbendazim and pyraclostrobin, which indicates that the inclusion of these fungicides within an integrated pest management (IPM) programme could help to minimize the risk of fenhexamid resistance developing in B. cinerea.  相似文献   

3.
The potential use of allyl isothiocyanate (AITC) and ethyl isothiocyanate (EITC), singly and in combination, was tested in in vitro and in vivo trials for their effect on Penicillium expansum Link and Botrytis cinerea Persl. infection on apple when used as a fumigant. A 3 : 1 ratio of AITC : EITC was more efficient at reducing in vitro spore germination of P. expansum and B. cinerea than were other combinations or either AITC or EITC alone. The optimized combination showed the lowest EC50 values, at 0.08 and 0.14 μg/ml air, for P. expansum conidial germination and mycelial growth, respectively, and 0.07 and 0.12 μg/ml air for B. cinerea conidial germination and mycelial growth, respectively. In in vivo trials, artificially infected apples were exposed for 4 days to an ITC‐enriched atmosphere. Among the ITCs tested, AITC, EITC and their combinations reduced incidence by more than 85% after 3–4 days of apple incubation at 20°C. Although further studies are necessary to evaluate any detrimental effects on apple quality, the evidence from this study supports the use of fumigation based on ITCs, and in particular a 3 : 1 combination of AITC and EITC, for control of postharvest mildew in apple fruit.  相似文献   

4.
The filamentous plant pathogenic fungus Fusarium graminearum is one of the most important pathogens causing Fusarium head blight (FHB) in wheat in the Henan Province of China. Metconazole is among the demethylation inhibitor (DMI) fungicides with a higher inhibitory activity on the mycelial growth of F. graminearum. In 2016 and 2017, 119 single spore isolates of F. graminearum, prior to being exposed to metconazole, were recovered from 52 wheat fields near 11 cities in Henan Province. The inhibitory activity of metconazole on the mycelia of the Henan F. graminearum population was determined, and EC50 values were calculated. The range of EC50 values of the Henan F. graminearum population to metconazole was 0.0103 to 0.0775 μg/ml with an average EC50 value of 0.0293 ± 0.0114 μg/ml. The sensitivity frequency distribution curve presented a single peak in a narrow range. No cross-resistance was found between the DMI fungicide metconazole and the benzimidazole fungicide carbendazim or the cyanoacrylate fungicide phenamacril. Therefore, these sensitivity data could be used as the baseline of F. graminearum susceptibility to metconazole in the Henan Province and provide the basis for monitoring metconazole resistance in this area.  相似文献   

5.
Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a devastating disease in Henan Province, of the main rapeseed production areas in China. Fluazinam belongs to the broad‐spectrum phenylpyridinamine fungicides, which have high activity in inhibiting the mycelial growth of S. sclerotiorum. In this study, 191 field isolates were obtained from different oilseed rape fields in Henan Province, before being exposed to fluazinam in 2015. The baseline sensitivity of S. sclerotiorum to fluazinam was established. The effective concentration for 50% inhibition of mycelial growth (EC50) ranged from 0.0019 to 0.0337 μg/ml, and the mean EC50 value was 0.0084 ± 0.0055 μg/ml. The range of the frequency distribution was narrow. The results of a cross‐resistance assay revealed no cross‐resistance between fluazinam and carbendazim, dimethachlone, boscalid or fludioxonil. Field efficacy tests showed that the control efficacies of fluazinam (50% WG) applied at 150, 225 and 300 g ai ha?1 were 67%, 73% and 88%, respectively. In contrast, the control efficacies of boscalid (50% WG) and carbendazim (50% WP) applied at 225 and 1,500 g ai ha?1 were 71% and 52%, respectively.  相似文献   

6.
In this study, sensitivities of 156 Sclerotinia sclerotiorum isolates collected from sunflower fields of West Azarbaijan province, Iran, were assessed to carbendazim and iprodione, and the baseline sensitivities were established for azoxystrobin and tebuconazole. Resistance to carbendazim and iprodione was observed in 53.85% and 4.49% of the isolates, respectively. The 50% effective concentration (EC50) values of azoxystrobin for the isolates ranged from 0.017 to 3.515 μg/ml with a mean of 0.330 μg/ml, and 8.97% of the strains showed low levels of resistance to the fungicide. However, in the presence of salicylhydroxamic acid, all isolates were sensitive to azoxystrobin and EC50 values ranged from 0.015 to 0.263 μg/ml with a mean of 0.086 μg/ml. All isolates were found to be sensitive to tebuconazole, and EC50 values ranged from 0.003 to 0.177 μg/ml with a mean of 0.036 μg/ml. Among the multiple-resistant isolates, the strains exhibiting resistance to both carbendazim and iprodione were detected in the highest frequency (4.49%). No correlation was observed between mycelial growth and aggressiveness with fungicide sensitivity of the isolates suggesting the absence of fitness cost associated with resistance to the studied fungicides. The results indicated that iprodione, azoxystrobin and tebuconazole could be effectively used in rotation or mixture in spray programmes to manage S. sclerotiorum in the region. The baselines established for azoxystrobin and tebuconazole would be useful in monitoring the fungal populations in the province to assess possible shifts in fungicide sensitivity of S. sclerotiorum isolates in the future.  相似文献   

7.

Aims

Tea tree oil (TTO) has been confirmed in previous study as a potential natural antifungal agent to control Botrytis cinerea and grey mould in fresh fruit. However, the mechanism of its action has not been clearly revealed, and some hypotheses mainly depended on the results obtained from the bacterial test. For the antifungal mechanism, the effect of TTO on the mycelium morphology and ultrastructure, cell wall and membrane, and membrane fatty acid composition of B. cinerea was investigated in vitro experiments.

Methods and Results

Tea tree oil in vapour or contact phase exhibited higher activity against the mycelial growth of B. cinerea. Observations using scanning electron microscope and transmission electron microscope revealed that the mycelial morphology and ultrastructure alternations caused by TTO are the markedly shriveled or flatted empty hyphae, with thick cell walls, ruptured plasmalemma and cytoplasmic coagulation or leakage. Furthermore, TTO caused significantly higher alkaline phosphatase activity after 4‐h treatment and markedly higher absorbance at 260 nm and electric conductivity in the external hyphae of fungi after 16‐h treatment. Moreover, decreased unsaturated/saturated fatty acid ratio of the fungal membrane was also observed after TTO treatment.

Conclusions

The methodology used in this study confirmed that the cell wall destroyed firstly in the presence of TTO, and then the membrane fatty acid composition changed, which resulted in the increasing of membrane permeability and releasing of cellular material. The above findings may be the main reason for TTO's antifungal ability to B. cinerea.

Significance and Impact of the Study

Understanding the mechanism of TTO antifungal action to B. cinerea is helpful for its commercial application on the preservation of fresh fruit and vegetables.  相似文献   

8.

Botrytis cinerea, the causal agent of gray mold is one of the major devastating fungal pathogens that occurs in strawberry cultivation and leads to massive losses. Due to the rapid emergence of resistant strains in recent years, an ecofriendly disease management strategy needs to be developed to control this aggressive pathogen. Bacillus velezensis CE 100 exhibited strong antagonistic activity with 53.05% against B. cinerea by dual culture method. In the present study, 50% of culture filtrate supplemented into PDA medium absolutely inhibited mycelial growth of B. cinerea whereas the highest concentration (960 mg/L) of different crude extracts including ethyl acetate, chloroform, and n-butanol crude extracts of B. velezensis CE 100, strongly inhibited mycelial growth of B. cinerea with the highest inhibition of 79.26%, 70.21% and 69.59% respectively, resulting in severe damage to hyphal structures with bulging and swellings. Hence, the antifungal compound responsible was progressively separated from ethyl acetate crude extract using medium pressure liquid chromatography. The purified compound was identified as methyl hippurate by nuclear magnetic resonance and mass spectrometry. The inhibitory effect of methyl hippurate on both spore germination and mycelial growth of B. cinerea was revealed by its dose-dependent pattern. The spore germination rate was completely restricted at a concentration of 3 mg/mL of methyl hippurate whereas no mycelial growth was observed in agar medium supplemented with 4 mg/mL and 6 mg/mL of methyl hippurate by poisoned food method. Microscopic imaging revealed that the morphologies of spores were severely altered by long-time exposure to methyl hippurate at concentrations of 1 mg/mL, 2 mg/mL and 3 mg/mL and hyphae of B. cinerea were severely deformed by exposure to methyl hippurate at concentrations of 2 mg/mL, 4 mg/mL and 6 mg/mL. No significant inhibition on tomato seed germination was observed in treatments with methyl hippurate (2 mg/mL) for both 6 h and 12 h soaking period as compared to the controls. Based on these results, B. velezensis CE 100 could be considered a potential agent for development of environmentally friendly disease control strategies as a consequence of the synergetic interactions of diverse crude metabolites and methyl hippurate.

  相似文献   

9.
Transposons and infection of fungal strains with mycoviruses can have significant effects on distinctive phenotypic traits of phytopathogenic fungi such as mycelial growth and sporulation, pathogenicity or fungicide resistance. Two transposable elements (TE), Boty and Flipper, are known to be associated with the ubiquitous fungus Botrytis cinerea. In addition, the presence of two types of ssRNAsRNA viruses, BVX and BVF, has been reported in B. cinerea. In this study, we assessed the genetic diversity of B. cinerea isolates, all sampled within a small‐sized German viticultural area (‘Rheingau’) by examining and classifying them according to the presence of TEs and mycoviruses. A subset of the isolates was further analysed with microsatellite markers to determine the origin of particular isolates with or without one or both mycoviruses. Virtually all isolates (98%) sampled in two different years (2008 and 2010) were screened positive for the presence of a transposon. Presence of one or both B. cinerea mycoviruses was confirmed for 37% of the analysed isolates sampled in 2010, representing the first record of B. cinerea mycoviruses in German isolates. Assignment on individual B. cinerea isolates to different genetic groups was independent of the presence or absence of a mycovirus or a transposable element, respectively. Furthermore, we found no correlation between the presence of either a mycovirus or a transposable element and different viticultural management practices, soil properties or levels of nitrogen fertilization applied to the respective vineyards. However, mycelial growth of B. cinerea strains containing mycovirus BVF was significantly reduced at lower temperatures.  相似文献   

10.
Commercial formulations of strobilurins (azoxystrobin, kresoxim‐methyl, trifloxystrobin and pyraclostrobin) were evaluated for their efficacy against Bean common mosaic virus (BCMV) in screenhouse and field conditions. Highest seed germination and seedling vigour were recorded with 20 μg/ml pyraclostrobin seed treatment in comparison with the control. In screenhouse studies, 76% protection against BCMV was recorded with pyraclostrobin seed treatment at 10 μg/ml. Under field conditions with natural BCMV inoculum, pyraclostrobin seed treatment resulted in 65% protection against BCMV. The protection offered by strobilurins against BCMV was evaluated by ELISA, with lowest immunoreactive values recorded in common bean seedlings raised from seeds treated with pyraclostrobin and kresoxim‐methyl. Strobilurins in addition to exerting a direct positive physiological effect on common bean plants also protect bean plants against BCMV infection in screen house and field conditions. Thus, it is proposed that these reduced‐risk pesticides are potential inducers against BCMV and growth enhancers and could be a beneficial component of integrated disease management of common bean.  相似文献   

11.
The objective was to reveal the effects of ozone treatment on quality maintenance and resistance to Botrytis cinerea and Penicillium expansum in kiwifruit during postharvest storage. Kiwifruits were treated with 79.44 ppm gaseous ozone for 1 hr once a day for 7 day at 0°C to determine the effects of ozone treatment on the quality and disease incidence caused by B. cinerea and P. expansum in vivo and the growth of B. cinerea and P. expansum in vitro. Ozone treatment significantly reduced the disease incidence of kiwifruit and inhibited the mycelial development and spore germination of B. cinerea and P. expansum. High levels of fruit firmness and titratable acidity were maintained in the ozone‐treated kiwifruit, and the activities of the defence‐related enzymes were remarkably enhanced. Therefore, ozone treatment may be an effective method to maintain the quality of kiwifruit and control its decay during postharvest storage.  相似文献   

12.
In this paper, the nitrogen atom was inserted into the anthracycline system of the isocryptolepine nucleus to obtain the “Aza”-type structure benzo[4,5]imidazo[1,2-c] quinazoline. A series of “Aza”-type derivatives were designed, synthesized and evaluated for their antifungal activity against six plant fungi in vitro. Among all derivatives, compounds A-0, B-1 and B-2 showed significant antifungal activity against B. cinerea with the EC50 values of 2.72 μg/mL, 5.90 μg/mL and 4.00 μg/mL, respectively. Compound A-2 had the highest activity against M. oryzae with the EC50 values of 8.81 μg/mL, and compound A-1 demonstrated the most control efficacy against R. solani (EC50, 6.27 μg/mL). Moreover, compound A-0 was selected to investigate the in vivo tests against B. cinerea and the results indicated that the preventative efficacy of it up to 72.80% at 100 μg/mL. Preliminary mechanism studies revealed that after treatment with A-0 at 5 µg/mL, the B. cinerea mycelia appeared curved, collapsed and the cell membrane integrity may be damaged. The reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia have been changed, and the membrane function and cell proliferation of mycelia were destroyed. Compounds A-0, A-1, B-1 and B-2 presented weaker toxicities against two cells lines than isocryptolepine. This study lays the foundation for the future development of isocryptolepine derivatives as environmentally friendly and safe agricultural fungicides.  相似文献   

13.
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from Kdaigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 1 ), was isolated from the AcOEt fraction (Kd‐AC). The BuOH‐soluble fraction afforded quercetin 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 2 ) and the new kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside‐7‐Oβ‐d ‐glucopyranoside ( 3 ), named daigremontrioside. The crude extract, Kd‐AC fraction, flavonoids 1 and 2 were evaluated using acyclovir‐sensitive strains of HSV‐1 and HSV‐2. Kd‐AC was highly active against HSV‐1 (EC50 = 0.97 μg/ml, SI > 206.1) and HSV‐2 (EC50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti‐HSV‐1 (EC50 = 7.4 μg/ml; SI > 27 and EC50 = 5.8 μg/ml; SI > 8.6, respectively) and anti‐HSV‐2 (EC50 = 9.0 μg/ml; SI > 22.2 and EC50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.  相似文献   

14.
Grey mould, caused by Botrytis cinerea Pers ex Fr., is one of the most common diseases of tomato worldwide. Fludioxonil belongs to the phenylpyrrole fungicides, which have high activity against B. cinerea. The sensitivity of fludioxonil was evaluated on the basis of the level of inhibition of mycelium growth in 274 B. cinerea isolates collected from different locations (untreated with this fungicide) in Henan Province, China. The EC50 values for fludioxonil ranged from 0.0033 to 0.0415 mg/l, and the average EC50 values were 0.0156 ± 0.0078 mg/l. Three fludioxonil‐resistant mutants were obtained by subculturing fludioxonil‐sensitive wild‐type isolates on continuously increasing fludioxonil concentrations. For the cross‐resistance assay, fludioxonil revealed positive cross‐resistance with procymidone but did not reveal cross‐resistance with pyrimethanil, boscalid and trifloxystrobin. Mycelial growth, conidial production, hyphal dry weight and pathogenicity were diminished significantly between the fludioxonil‐resistant mutants and their sensitive wild‐type parental isolates. This study shows for the first time that fludioxonil‐resistant isolates of B. cinerea are still not present in Henan Province because this fungicide is an attractive and effective fungicide for chemical control. Recommendations can be made to growers to use fludioxonil to control grey mould and to consider the potential moderate resistance risk of using this fungicide.  相似文献   

15.
The morphological type of a microorganism generally influences its metabolite production. In the present study, we investigated the effects of the mycelial morphology of shiitake (Lentinula edodes) on the production of 2-mercaptohistidine trimethylbetaine (ergothioneine, ESH) during liquid fermentation. Analyses of the distribution of ESH in mycelial cells of different morphological types revealed that the ESH content of pellets obtained from the liquid fermentation media was much greater than the content in the free mycelia and clumps. The concentration of ESH in pellets on day 15 of liquid fermentation reached 0.79 mg/g dry weight (DW), which is approximately three times the concentration found in mycelia clumps (0.28 mg/g DW) and free mycelia (0.31 mg/g DW). Macroscopic image analysis of the development and morphological changes of the pellets during a liquid fermentation period of up to 25 days indicated that pellet growth showed a highly positive correlation with the increase in ESH concentration (r 2 = 0.9851). A reduced agitation rate of 50 rpm for the culture medium was suitable for pellet formation and size enlargement. The results obtained in this work would be helpful in guiding the intentional manipulation of the distribution and enrichment of ESH in L. edodes through changes in liquid fermentation conditions.  相似文献   

16.
To develop new agents against strawberry grey mould and to aid in the development of biological pesticides, we investigated the inhibitory effect of a natural compound, phenazine-1-carboxamide (PCN), against Botrytis cinerea using a growth rate assay. Additionally, indoor toxicity and the in vitro control effect of PCN were further studied to determine its potential mechanisms of action on B. cinerea. PCN was inhibitory against B. cinerea with a 50% effective concentration (EC50) of 108.12 μg/mL; the toxicity of PCN was equivalent to that of carbendazim (CBM). The best in vitro control effect of PCN against grey mould in strawberry (fruit) reached 75.32%, which was slightly higher than that of CBM. The field control effect of PCN against grey mould reached a maximum of 72.31% at a PCN concentration of 700 μg/mL, which was 1.02 times higher than that of CBM. Fungistatic activity was observed at low concentrations of PCN, while high concentrations of PCN resulted in fungicidal activity against B. cinerea. This natural compound strongly inhibited both spore and sclerotium germination of B. cinerea, with the best relative inhibition rates of 77.03% and 82.11%, respectively. The inhibitory effect of PCN on mycelial growth of B. cinerea was significant and reached levels of 87.32%. Scanning electron microscopy observations revealed that after 48 h of PCN treatment, the mycelia appeared loose, locally twisted, and folded, with exudation of contents; the mycelia was withered and twisted, with edge burrs, deformations, ruptures and a sheet-like structure. Transmission electron microscopy observations revealed that after 48 h of PCN treatment, the structure of the cell nucleus was unclear and the vacuoles had ruptured; additionally, various organelles exhibited disordered structures, there were substantial non-membrane transparent inclusions, the cells were plasmolysed, the cell walls were collapsed in some cases, and the hyphal tissue was essentially necrotic. A PCN dosage of 35–140 μg/mL had no effect on the cell membrane permeability of the mycelia, while a PCN dosage of 700 μg/mL resulted in significant permeability. PCN inhibited B. cinerea toxin; the mycotoxin level was approximately 0.41 of the value recorded for the control at a PCN dosage of 700 μg/mL. PCN affected the activity of pectin methylgalacturonase (PMG), polygalacturonase (PG), cellulase (Cx) and β-glucosidase (BG); the lowest activities of PMG, PG, BG and Cx reached 0.3 U/mg, 0.62 U/mg, 0.64 U/mg, and 0.79 U/mg, respectively, after treatment with 700 μg/mL PCN.  相似文献   

17.
We evaluated the antimicrobial activity of 25 monoketone curcuminoids (MKCs) against a representative panel of cariogenic bacteria in terms of their minimum inhibitory concentration (MIC) values. Curcumin A ( 10 ) displayed promising activity against Streptococcus mutans (MIC = 50 μg/ml) and Streptococcus mitis (MIC = 50 μg/ml) as well as moderate activity against Ssanguinis (MIC = 100 μg/ml), Lactobacillus casei (MIC = 100 μg/ml), and Streptococcus salivarius (MIC = 200 μg/ml). Results indicated higher activity of compound 10 than that of its bis‐β‐diketone analog. Additionally, compounds 3a (1,5‐bis(4‐methylphenyl)pentan‐3‐one) and 7b (1,5‐bis(4‐bromophenyl)pentan‐3‐ol) were moderately active against Smitis (MIC = 100 μg/ml) and Ssalivarus (MIC = 200 μg/ml).  相似文献   

18.
As a notable biocontrol agent, Trichoderma harzianum can antagonize a diverse array of phytopathogenic fungi, including Botrytis cinerea, Rhizoctonia solani and Fusarium oxysporum. Elucidating the biocontrol mechanism of T. harzianum in response to the pathogens enables it to be exploited in the control of plant diseases. Two-dimensional gel electrophoresis (2-DE) was performed to obtain secreted protein patterns of T. harzianum ETS 323, grown in media that contained glucose, a mixture of glucose and deactivated B. cinerea mycelia, deactivated B. cinerea mycelia or deactivated T. harzianum mycelia. Selected protein spots were identified using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Ninety one out of 100 excised protein spots were analyzed and some proteins were sequence identified. Of these, one l-amino acid oxidase (LAAO) and two endochitinases were uniquely induced in the media that contained deactivated B. cinerea mycelia as the sole carbon source. Activities of the cell wall-degrading enzymes (CWDEs), including β-1,3-glucanases, β-1,6-glucanases, chitinases, proteases and xylanases, were significantly higher in media with deactivated B. cinerea mycelia than in other media. This finding suggests that the cell wall of B. cinerea is indeed the primary target of T. harzianum ETS 323 in the biocontrol mechanism. The possible roles of LAAO and xylanase were also discussed.  相似文献   

19.
Many isolates of the saprophytic fungus Epicoccum nigrum produce yellow compounds that diffuse readily into culture media. Historically, two such compounds have been identified; flavipin and epirodin both reported to have antimicrobial properties. Preliminary studies on 280 New Zealand isolates of E. nigrum confirmed that all but two produced a yellow, intensely pigmented substance in sufficient amounts to inhibit the germination of Botrytis cinerea conidia. The compound produced by the inhibitory isolates is epirodin, a polyene antibiotic. Five representative E. nigrum isolates were selected for further investigation. Two of these produced relatively large amounts of epirodin and, in a diffusible metabolite assay, reduced germination of B. cinerea conidia by up to 94%. Another isolate produced a trace amount of epirodin and had no effect on the germination of B. cinerea conidia or on germ tube morphology. The two remaining isolates produced intermediate amounts of epirodin and were only moderately inhibitory to the germination of B. cinerea conidia and to germ tube morphology. In slide dual‐culture experiments, epirodin appeared to concentrate in conidia and mycelia of B. cinerea. In acid conditions, as on dual‐culture slides of E. nigrum and B. cinerea, the yellow‐coloured epirodin underwent a hypsochromic shift, changing colour to become red. The relationship between epirodin production and the suppression of Botrytis growth and development was further investigated using necrotic kiwifruit leaf discs. The E. nigrum isolate that produced the greatest amount of epirodin almost completely inhibited the growth and development of B. cinerea on the leaf discs. In contrast, the efficacy of E. nigrum isolates which produced less epirodin ranged from 78% to just 23%. This is the first report of epirodin production by New Zealand isolates of E. nigrum, and we conclude that isolates that produce high concentrations of epirodin may have potential for plant disease control.  相似文献   

20.
The mycelial morphology of Blakeslea trispora was of crucial importance in the production of β-carotene in submerged cultures of B. trispora. After the spores were inoculated, the time-course variation of mycelial morphology was closely examined under the microscope. With the addition of the non-ionic surfactant (Span 20: Sorbitan monolaurate, E493) to the culture medium, a unique pattern of mycelial elongation was observed: 1) slow formation of germ tubes from spores and 2) appearance of mycelia with very short length, which allowed a well-dispersed growth of B. trispora without significant pellet aggregation. Span 20 appears to act like a paramorphogen. Without Span 20, however, the fungal culture finally formed a big clump of mycelium owing to heavy cross-linking of long mycelia. But the short mycelium maintained in the course of cultivation seemed to be irrelevant to growth inhibition, because the final concentration of dry mycelium was much higher with Span 20 after 3-day cultivation. The 20-fold increase in specific yield of β-carotene (mg β-carotene produced per g mycelium) was achieved with this drastic change in the pattern of mycelial elongation. The reason for this result might be more effective mass transfer and/or enhanced sensitivity to environmental oxidative stress in the well-dispersed mycelial cultures of B. trispora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号