首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

2.
Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no-chase control. We used a repeated-measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no-chase control; (b) a 3-min exhaustive chase; and (c) a 3-min exhaustive chase followed by 1-min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no-chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no-chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it.  相似文献   

3.
Brain size varies dramatically, both within and across species, and this variation is often believed to be the result of trade-offs between the cognitive benefits of having a large brain for a given body size and the energetic cost of sustaining neural tissue. One potential consequence of having a large brain is that organisms must also meet the associated high energetic demands. Thus, a key question is whether metabolic rate correlates with brain size. However, using metabolic rate to measure energetic demand yields a relatively instantaneous and dynamic measure of energy turnover, which is incompatible with the longer evolutionary timescale of changes in brain size within and across species. Morphological traits associated with oxygen consumption, specifically gill surface area, have been shown to be correlates of oxygen demand and energy use, and thus may serve as integrated correlates of these processes, allowing us to assess whether evolutionary changes in brain size correlate with changes in longer-term oxygen demand and energy use. We tested how brain size relates to gill surface area in the blacktip shark Carcharhinus limbatus. First, we examined whether the allometric slope of brain mass (i.e., the rate that brain mass changes with body mass) is lower than the allometric slope of gill surface area across ontogeny. Second, we tested whether gill surface area explains variation in brain mass, after accounting for the effects of body mass on brain mass. We found that brain mass and gill surface area both had positive allometric slopes, with larger individuals having both larger brains and larger gill surface areas compared to smaller individuals. However, the allometric slope of brain mass was lower than the allometric slope of gill surface area, consistent with our prediction that the allometric slope of gill surface area could pose an upper limit to the allometric slope of brain mass. Finally, after accounting for body mass, individuals with larger brains tended to have larger gill surface areas. Together, our results provide clues as to how fishes may evolve and maintain large brains despite their high energetic cost, suggesting that C. limbatus individuals with a large gill surface area for their body mass may be able to support a higher energetic turnover, and, in turn, a larger brain for their body mass.  相似文献   

4.
SUMMARY. The rate of development and mortality of perch Perca fluviatilis was studied at ten different constant temperatures. The rate of development was inversely related to the incubation temperature, whereas the rate of mortality was directly related to the incubation temperature. The sum of heat (Σ H , degree-days) required for 10, 50 and 90% of the eggs to hatch was found to be constant, regardless of the incubation temperature, with mean values (with 95% confidence limits) of 91.4 (83.3–102.0) degree-days above 4.6°C for 10% hatched, 97.0 (90.9–104.2) degree-days above 4.9°C for 50% hatched and 101.0 (94.3–108.7) degree-days above 5.0°C for 90% hatched. Mortality among the different embryological stages was highest for the pre-hatching stage (i.e. when eye-pigment has been formed) at all temperatures. High mortality among the early stages occurred at temperatures below 8°C and above 12°C.  相似文献   

5.
The effect of temperature and body size on oxygen uptake of European eels, Anguilla anguilla , was studied. The mass specific oxygen uptake of large eels was lower at all temperatures than that of small eels. The effect of temperature on metabolism was greater on small eels than on large eels. The relationship between oxygen consumption and body size is described by the equation M = a Wb , where M is metabolism (O2 h-1 ), W is body weight (g), b is the slope of the function which describes the relationship between body weight change and metabolism, and a is the temperature-dependent constant of the equation. In this study it was found that increased temperature caused an increase in a and a decrease in b .  相似文献   

6.
SUMMARY. The rate of gastric evacuation in perch (Perca fluviatilis) (89–170 mm length) fed on fish larvae was studied at temperatures between 12.0 and 21.7°C. Gastric evacuation rates were usually described by an exponential function. The instantaneous rate of gastric evacuation ( R ) was constant for a large number of different meal sizes. At higher food rations, a lag phase in digestion was found during the first part of digestion, and this ration size was smaller for smaller perch (89–110 mm) than for bigger perch (120–170 mm). Below these larger meal sizes, gastric evacuation was similar for the different size classes studied. The relation between R and temperature was described by an exponential function. The effects of meal size, number of food items, fish size and temperature on the rate of gastric evacuation are discussed.  相似文献   

7.
温度、盐度和体长对西藏拟溞耗氧率的影响   总被引:6,自引:0,他引:6  
赵文  张琳  霍元子 《生态学报》2005,25(7):1549-1553
在实验室内研究了盐度(S=5、10、15、20和25)、温度(T=3、8、14、20和22℃)和体长(L=0.83、1.25、1.49、1.87和2.42mm)对西藏拟耗氧率的影响。结果表明,在试验盐度内该的个体耗氧率(IO)和比耗氧率(SO)均随盐度(S)升高而升高,其回归方程分别为IO=0.0014S 0.0126和SO=0.115S0.5612,数值范围为0.02~0.045μg/(indh)和0.31~0.67μg/(mg·h)。个体耗氧率和比耗氧率在温度试验中有同样的趋势,回归方程分别为IO=0.0049e0.1574T和SO=0.0678e0.1605T,数值分别为0.0076~0.13μg/(ind·h)和0.10~1.71μg/(mg·h)。体长试验中个体耗氧率随体长增大而增大,而比耗氧率则降低,回归方程分别为:IO=0.0545L2.5962和SO=-0.2059L 0.7908,数值范围为0.036~0.68μg/(ind·h)和0.38~0.63μg/(mg·h)。讨论了盐度、温度和体长对西藏拟耗氧率的影响。  相似文献   

8.
Granqvist  Mikaela  Mattila  Johanna 《Hydrobiologia》2004,514(1-3):93-101
Hydrobiologia - Nursery areas of perch, Perca fluviatilis L., in the shallow coastal areas of the Baltic Sea are affected by increased water turbidity due to the ongoing eutrophication and other...  相似文献   

9.
Metabolic rate is traditionally assumed to scale with body mass to the 3/4-power, but significant deviations from the '3/4-power law' have been observed for several different taxa of animals and plants, and for different physiological states. The recently proposed 'metabolic-level boundaries hypothesis' represents one of the attempts to explain this variation. It predicts that the power (log-log slope) of metabolic scaling relationships should vary between 2/3 and 1, in a systematic way with metabolic level. Here, this hypothesis is tested using data from birds and mammals. As predicted, in both of these independently evolved endothermic taxa, the scaling slope approaches 1 at the lowest and highest metabolic levels (as observed during torpor and strenuous exercise, respectively), whereas it is near 2/3 at intermediate resting and cold-induced metabolic levels. Remarkably, both taxa show similar, approximately U-shaped relationships between the scaling slope and the metabolic (activity) level. These predictable patterns strongly support the view that variation of the scaling slope is not merely noise obscuring the signal of a universal scaling law, but rather is the result of multiple physical constraints whose relative influence depends on the metabolic state of the organisms being analysed.  相似文献   

10.
Abstract. Isothermal heat-conductance calorimetry was used to monitor responses of tomato and carrot metabolism to changes in temperature and oxygen concentrations. Calorimetric measurements of metabolic heat evolution from tissue segments and cultured cells was found to be a sensitive, nondestructive estimate of metabolic rates. Short-term measurements of metabolic rates of cells in culture correlate well with calorimetric measurements made on tissue sections. The results accurately predict the growth properties of intact plants based on the generally recognized characteristics of these two species. The calorimetric method provides another means for rapid evaluation of plant responses to physical and chemical stresses and is of value for screening and selection.  相似文献   

11.
SUMMARY. The rate of gastric evacuation in perch Perca fluviatilis was studied at different mean temperatures (range 4.0–21.7°C). Gastric evacuation rates were empirically described by an exponential function and the relationship between the instantaneous evacuation rate ( R ) and temperature was also exponential. Evacuation rates were not significantly different ( P > 0.1) for the following food organisms: Gammarus pulex, Chaoborus , chironomids and zooplankton. The effects of temperature, different food organisms and fish size on the evacuation rates in different fish species are discussed.  相似文献   

12.
采用静水法测定了不同温度、不同个体大小的单齿螺耗氧率和排氨率。结果表明:在16-33℃的实验温度范围内单齿螺的耗氧率(RO)和排氨率(RN)与软体部干重(W)都呈负相关,它们之间关系可以分别用幂函数RO=aW-b和RN=a1W-b1表示。16~29℃温度范围内单齿螺的耗氧率和排氨率均随温度的升高而增加,29℃时耗氧率和排氨率达到最大值,当温度继续升高超过29℃后,耗氧率和排氨率则随温度的升高而下降,耗氧率、排氨率与温度之间呈显著的指数函数关系RO=cedT和RN=c1ed1T;不同个体大小单齿螺的O:N比在16~20℃时较大,Q10取值范围0.56-3.74,平均值为1.64。方差分析表明,温度、软体部干重对单齿螺的耗氧率和排氨率均有极显著的影响(P<0.01)。  相似文献   

13.
Routine oxygen consumption rates of young spotted seatrout Cynoscion nebulosus (Sciaenidae) were measured over a range of temperatures (24, 28, 30 and 32° C) and salinities (5, 10, 20, 35 and 45). Larvae and juveniles, 4·1–39·5 mm standard length ( L S), ranging several orders of magnitude in dry body mass were used to estimate the mass–metabolism relationship. Oxygen consumption (μl O2 larva−1 h−1) scaled isometrically with body mass for larvae <5·8 mm L S(phase I, slope = 1·04) and allometrically thereafter (phase II, slope = 0·78). The inflection in the mass–metabolism relationship coincided with the formation of the hypural plate and an increase in the relative tail size of larvae. Salinity did not have a significant effect on routine metabolism during phase I. Temperature and salinity significantly affected routine metabolism during phase II of the mass–metabolism relationship. The effect of salinity was temperature dependent, and was significant only at 30° C. Response surfaces describing the environmental influences on routine metabolism were developed to provide a bioenergetic basis for modelling environmental constraints on growth.  相似文献   

14.
The foraging efficiency of juvenile perch (Perca fluviatilis), feeding on two types of prey, was studied in laboratory experiments. Waterfleas (Daphnia magna) and phantom midge larvae (Chaoborus flavicans) were offered in a range of densities, either separately or combined. Perch fed more efficiently on each prey type separately than when both were mixed. Foraging efficiency decreased with an increase of mixed prey density with both prey types present in equal numbers, but also when the proportion of Chaoborus increased. This could be caused by the existence of different hunting techniques, each of which is fully efficient in the presence of one prey type only. In the presence of two prey types, the predator constantly has to switch from one hunting technique to another.  相似文献   

15.
Synopsis The influence of temperature and the size of reproducing females on the timing of spawning of perch in Lake Geneva has been studied for 10 consecutive years (1984–1993) by means of artificial spawning substrates. The clutch of perch is an egg ribbon with a width proportional to the size of the reproducing female, so that the size structure distribution of the female population can be estimated from measurements of the width of the egg ribbons. The survey of egg-ribbon size revealed a succession of 3 cycles (period of increasing mean size followed by a sharp decrease) lasting 3, 3 and 4 years which were due to the occurrence of 3 strong year classes born in 1982, 1985 and 1988 respectively. This phenomenon can be explained by the effect of intraspecific predation exerted by strong year classes on the offspring of the 2 following years rather than by fluctuations in the success of reproduction in relation to climatic changes. In Lake Geneva, perch spawn in May. The water temperature exerted only a minor influence on the date of the beginning of the spawning period but had a greater effect on its intensity. A rise in temperature in May stimulated spawning while bad weather decreased spawning intensity. The larger perch had a tendency to spawn later than the small ones. The date of the mid-spawning period was well correlated with the yearly mean width of perch egg ribbons but no correlation could be detected between it and the water temperature.  相似文献   

16.
Four small, acidified boreal lakes, all sustaining populations of perch Perca fluviatilis, roach Rutilus rutilus and pike Esox lucius, were studied in four successive years. Three lakes were moderately acidified (mean pH of 5·61-5·83), while the fourth was more acidic (mean pH of 5·16) and had a sparse population of R. rutilus. Perca fluviatilis density was higher in this lake (1004 ha(-1)) than in the other three (355-717 ha(-1)), where R. rutilus dominated in terms of numbers (981-2185 ha(-1)). Large, potentially predatory, P. fluviatilis were most abundant in the lake with clearest water, and these seemed to have a negative effect on P. fluviatilis density. Perca fluviatilis mean mass was negatively correlated with R. rutilus biomass and was highest in the most acidic lake with the sparse R. rutilus and the highest P. fluviatilis density. Perca fluviatilis mass correlated positively with pH in two lakes (with the highest fish biomass), suggesting that low pH affected P. fluviatilis mass negatively. Perca fluviatilis growth correlated positively with summer (July to August) air temperature in the lake with sparse R. rutilus, thus differing from P. fluviatilis and R. rutilus growth in the other three lakes. The mean age of P. fluviatilis was generally lower than that of R. rutilus and was lowest in the two lakes with the highest fish biomass, indicating that adult mortality was affected by density-induced factors.  相似文献   

17.
Effects of temperature and group size of roach Rutilus rutilus on foraging behaviour of perch Perca fluviatilis and R. rutilus were tested in two laboratory experiments. A temperature experiment with P. fluviatilis and R. rutilus in aquaria (with either one P. fluviatilis or two R. rutilus) was tested at five temperatures: 4, 8, 12, 16 and 20° C, and showed that P. fluviatilis had a lower swimming speed and capture rate than R. rutilus, especially at 4 and 8° C. The effect of group size was tested at four R. rutilus abundances: 0, 2, 4 and 6, all at 16° C, and revealed that swimming speed and capture rate of P. fluviatilis were lowest at the highest R. rutilus abundance, whereas R. rutilus was relatively unaffected. Perca fluviatilis occupied positions closer to the bottom than R. rutilus, especially when feeding, and this tendency was reinforced at the highest roach abundance.  相似文献   

18.
Fish respiration rates that are presumed to represent standard metabolic rates (SMR) may sometimes include an unspecified energy expenditure associated with activity and digestion. This situation may introduce a bias in bioenergetics models because standard metabolism, digestion, and activity may not be affected by the same environmental conditions. The aim of this study was to (1) develop a SMR model for juvenile yellow perch, Perca flavescens (Mitchill), that represent the minimum energy expenditure required to maintain life and (2) compare the results of this study with published perch metabolic rates and bioenergetics models. SMR was estimated for yellow perch over a range of body␣mass (4.4–24.7 g) and water temperature (12–20°C). The intercept of the relationship between fish respiration and swimming velocity obtained during forced swimming experiments was used to determine SMR. SMR estimated by the present study were comparable to values presented by two published studies on Eurasian perch, Perca fluviatilis L. However, estimated SMR were 4.1–20.9 times lower than values of a third respirometry study and predictions of bioenergetics models for perch. The present study suggests that published SMR models may sometimes include a significant fraction of energy expenditures (39.2–75.9%) associated with digestion and activity. This may complicate the implementation and the interpretation of fish bioenergetics models. The present study indicates that the intercept of respiration-velocity relationships and long-term respiration rates during starvation experiments may provide similar and reliable SMR values.  相似文献   

19.
The effects of water temperature on the timing of spawning of perch Perca fluviatilis in Lake Geneva were assessed in a 20 year survey (1984–2003). Spawning started at the end of April or at the beginning of May, when the water temperature rose to >10° C, but most of the spawns were laid when water temperature exceeded 12° C. This led to a positive correlation between the date of the mid-spawning period and the date when the water temperature rose to >12° C. Large perch had a tendency to spawn later than the small ones, which led to a positive correlation between the date of mid-spawning period and the yearly mean width of perch egg-ribbons. The coefficient of multiple determination between the date of mid-spawning period and the mean width of the ribbon of spawn, combined with the date when the water temperature rose to >12° C was r 2= 0·77. The perch generally chose deeper spawning places (12 m) at the end of the spawning period than at the beginning (4 m), which was related to water temperature.  相似文献   

20.
Turbot Scophthalmus maximus maximum oxygen uptake following feeding and exhaustive exercise increased from 107 mg O2 kg−1 h−1 at 6° C to c . 218 mg O2 kg−1 h−1 at 18° C, then increased slightly from 18 to 22° C to 224 mg O2 kg−1 h−1. Standard oxygen uptake increased exponentially as a function of temperature from 11 mg O2 kg −1 h−1 at 6° C to 66 mg O2 kg−1 h−1 at 22° C. Gradual reduction in oxygen concentration to 87–90% air saturation at 6, 10. 18° C and <80% at 14 and 22° C limited the maximum metabolic rate but, supersaturation (>100% saturation) had little effect. Metabolic scope attained a maximum of 176 mg O2 kg−1 h−1 at 18° C. Interpolation of the results showed that this value changed little between 16 and 20° C. It is suggested that this temperature range is optimal for turbot of c . 500 g. A comparison with a previous study on feeding demand in intensive farming conditions showed a linear relationship between appetite and metabolic scope. It is concluded that the ability of a fish to supply energy (including the energy requirement of digestive metabolism) above a standard level is a limiting factor in the manifestation of its feeding demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号