首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inactivation of PI 3-kinase (PI3K) signalling is critical for tumour suppression by PTEN. This is thought to be a unidirectional relationship in which PTEN degrades the lipids produced by PI3K, thus controlling cell proliferation, survival and migration. We now show that this relationship is in fact bidirectional, whereby PI3K reciprocally controls PTEN. We report that the p110delta PI3K negatively regulates PTEN, through a pathway involving inhibition of RhoA. Inactivation of p110delta in macrophages led to reduced Akt and Rac1 activation, but paradoxically to increased RhoA and PTEN activity. Partial inactivation of p190RhoGAP and a reduced binding of cytoplasmic RhoA to the cyclin-dependent kinase inhibitor p27 both contributed to the increased RhoA-GTP levels upon p110delta inactivation. Pharmacological inhibition of ROCK, a downstream effector kinase of RhoA, restored all signalling and functional defects of p110delta inactivation, including Akt phosphorylation, chemotaxis and proliferation. This work identifies the RhoA/ROCK pathway as a major target of p110delta-mediated PI3K signalling, and establishes for the first time that PI3K controls itself, via a feedback loop involving PTEN.  相似文献   

2.
Intracellular signal transduction events in reperfusion following ischemia influence myocardial infarct development. Here we investigate the role of Rho kinase (ROCK) activation as a specific injury signal during reperfusion via attenuation of the reperfusion injury salvage kinase (RISK) pathway phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide (NO) synthase (eNOS). Rat isolated hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. Phosphorylation of the ROCK substrate protein complex ezrin-radixin-moesin, assessed by immunoblotting and immunofluorescence, was used as a marker of ROCK activation. Infarct size was determined by tetrazolium staining, and terminal dUTP nick-end labeling (TUNEL) positivity was used as an index of apoptosis. The ROCK inhibitors fasudil or Y-27632 given 10 min before ischemia until 10 min after reperfusion reduced infarct size (control, 34.1 +/- 3.8%; 5 microM fasudil, 18.2 +/- 3.1%; 0.3 microM Y-27632, 19.4 +/- 4.4%; 5 microM Y-27632, 9.2 +/- 2.9%). When 5 microM Y-27632 was targeted specifically during early reperfusion, robust infarct limitation was observed (14.2 +/- 2.6% vs. control 33.4 +/- 4.4%, P<0.01). The protective action of Y-27632 given at reperfusion was attenuated by wortmannin (29.2 +/- 6.1%) and N(omega)-nitro-L-arginine methyl ester (30.4 +/- 5.7%), confirming a protective mechanism involving PI3K/Akt/NO. Ezrin-radixin-moesin phosphorylation in risk zone myocardium confirmed early and sustained ROCK activation during reperfusion and its inhibition by Y-27632. Inhibition of ROCK activation at reperfusion reduced the proportion of TUNEL-positive nuclei in the infarcted region. In conclusion, ROCK activation occurs specifically during early reperfusion. Inhibition of ROCK at reperfusion onset limits infarct size through an Akt/eNOS-dependent mechanism, suggesting that ROCK activation at reperfusion may be deleterious through suppression of the RISK pathway.  相似文献   

3.
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.  相似文献   

4.
5.
Zhang L  Valdez JM  Zhang B  Wei L  Chang J  Xin L 《PloS one》2011,6(3):e18271
Activation of the RhoA/ROCK signaling pathway has been shown to contribute to dissociation-induced apoptosis of embryonic and neural stem cells. We previously demonstrated that approximately 1 out of 40 Lin(-)Sca-1(+)CD49f(high) (LSC) prostate basal epithelial cells possess the capacities of stem cells for self-renewal and multi-lineage differentiation. We show here that treating LSC cells with the ROCK kinase inhibitor Y-27632 increases their cloning efficiency by 8 fold in an in vitro prostate colony assay. Y-27632 treatment allows prostate colony cells to replate efficiently, which does not occur otherwise. Y-27632 also increases the cloning efficiency of prostate stem cells in a prostate sphere assay and a dissociated prostate cell regeneration assay. The increased cloning efficiency is due to the suppression of the dissociation-induced, RhoA/ROCK activation-mediated apoptosis of prostate stem cells. Dissociation of prostate epithelial cells from extracellular matrix increases PTEN activity and attenuates AKT activity. Y-27632 treatment alone is sufficient to suppress cell dissociation-induced activation of PTEN activity. However, this does not contribute to the increased cloning efficiency, because Y-27632 treatment increases the sphere-forming unit of wild type and Pten null prostate cells to a similar extent. Finally, knocking down expression of both ROCK kinases slightly increases the replating efficiency of prostate colony cells, corroborating that they play a major role in the Y-27632 mediated increase in cloning efficiency. Our study implies that the numbers of prostate cells with stem/progenitor activity may be underestimated based on currently employed assays, supports that dissociation-induced apoptosis is a common feature of embryonic and somatic stem cells with an epithelial phenotype, and highlights the significance of environmental cues for the maintenance of stem cells.  相似文献   

6.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

7.
R-(−)-gossypol acetic acid (AT-101) is a natural cottonseed product that exhibits anticancer activity. However, the molecular mechanism behind the antileukemic activity of AT-101 has not been well characterized. In this study, we investigated how AT-101 induces apoptosis in human leukemia cells. Exposure to AT-101 significantly increased apoptosis in both human leukemia cell lines and primary human leukemia cells. This increase was accompanied by the activation of caspases, cytochrome c release, Bcl2-associated X protein (Bax) translocation, myeloid cell leukemia-1 (Mcl-1) downregulation, Bcl-2-associated death promoter (Bad) dephosphorylation, Akt inactivation, and RhoA/Rho-associated coiled-coil containing protein kinase 1/phosphatase and tensin homolog (RhoA/ROCK1/PTEN) activation. RhoA, rather than caspase-3 cleavage, mediated the cleavage/activation of ROCK1 that AT-101 induced. Inhibiting RhoA and ROCK1 activation by C3 exoenzyme (C3) and Y27632, respectively, attenuated the ROCK1 cleavage/activation, PTEN activity, Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and apoptosis mediated by AT-101. Knocking down ROCK1 expression using a ROCK1-specific siRNA also significantly abrogated AT-101-mediated apoptosis. Constitutively active Akt prevented the AT-101-induced Mcl-1 downregulation, Bad dephosphorylation, and apoptosis. Conversely, AT-101 lethality was potentiated by the phosphatidylinositol 3-kinase inhibitor LY294002. In vivo, the tumor growth inhibition caused by AT-101 was also associated with RhoA/ROCK1/PTEN activation and Akt inactivation in a mouse leukemia xenograft model. Collectively, these findings suggest that AT-101 may preferentially induce apoptosis in leukemia cells by interrupting the RhoA/ROCK1/PTEN pathway, leading to Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and Bax translocation, which culminate in mitochondrial injury and apoptosis.  相似文献   

8.
We have previously shown that Rho small GTPase is required for modulating both cell migration and proliferation through cytoskeleton reorganization and focal adhesion formation in response to wounding. In the present study, we investigated the role of Rho kinases (ROCKs), major effectors of Rho GTPase, in mediating corneal epithelial wound healing. Both ROCK 1 and 2 were expressed and activated in THCE cells, an SV40-immortalized human corneal epithelial cell (HCEC) line, in response to wounding, lysophosphatidic acid, and heparin-binding EGF-like growth factor (HB-EGF) stimulations. The ROCK inhibitor Y-27632 efficiently antagonized ROCK activities without affecting Rho activation in wounded HCECs. Y-27632 promoted basal and HB-EGF-enhanced scratch wound healing and enhanced cell migration and adhesion to matrices, while retarded HB-EGF induced cell proliferation. E-cadherin- and beta-catenin-mediated cell-cell junction and actin cytoskeleton organization were disrupted by Y-27632. Y-27632 impaired the formation and maintenance of tight junction barriers indicated by decreased trans-epithelial resistance and disrupted occludin staining. We conclude that ROCK activities enhance cell proliferation, promote epithelial differentiation, but negatively modulate cell migration and cell adhesion and therefore play a role in regulating corneal epithelial wound healing.  相似文献   

9.
Retinal pigment epithelium (RPE) cells is the outermost layer of the retina and RPE dysfunction is a key factor in the disease pathogenesis of age-related macular degeneration (AMD). Transplantation therapy using induced pluripotent stem cell (iPSC)-derived RPEs has recently received much attention as a treatment for AMD. Preserving these cells under the best possible conditions is important, and preservation methods using Y-27632 have been reported. Rho-associated coiled-coil containing kinase (ROCK) inhibitors are known to inhibit cell death, emerging as important drug candidates for stem cell differentiation and regenerative medicine. However, it has recently been shown that ROCK inhibitors may have a vasodilatory effect on human retinal arterioles, a side effect that should ideally be avoided in RPE transplantation. Although ROCK inhibitors hold great potential, optimizing efficacy while minimizing adverse reactions is critical for translation into a clinical treatment. We examined the effect of transient exposure of RPE cells to ROCK inhibitor Y-27632 to determine whether the extracellular presence of the drug is necessary for ongoing Rho/ROCK downregulation. Human RPE cells were subcultured as a suspension for 4 h in drug-free medium following exposure to Y-27632 for 2 h. A Y-27632 concentration of >10 μM improved cell survival beyond 4 h and cell proliferation in recovery culture medium. ROCK2 expression levels were specifically downregulated by Y-27632 in the Rho/ROCK signaling pathway. In conclusion, we demonstrated that the effect of Y-27632 is not dependent on its extracellular availability and can last beyond the 2 h of exposure. The lasting Rho/ROCK signaling pathway downregulation by Y-27632 suggests that RPE cell transplantation with ROCK inhibitor-free media is possible, which can minimize side effects to host tissue and have wider implications for transplantation methods requiring ROCK inhibition.  相似文献   

10.
PI3K/PTEN signaling in tumorigenesis and angiogenesis   总被引:9,自引:0,他引:9  
The phosphatidyl inositol 3-kinase (PI3K) can be activated by a variety of extracellular signals and involved in a number of cellular processes including cell proliferation, survival, protein synthesis, and tumor growth. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is an antagonist of PI3K. The alterations of PI3K pathway such as activation of oncogenes, gene amplification, and inactivation of tumor suppressors, commonly occur in many human cancers. Angiogenesis is required for tumor growth and metastasis when the tumor reaches more than 1 mm in diameter. Recent studies have shown that PI3K and Akt play an important role in regulating tumor growth and angiogenesis through VEGF and HIF-1 expression. PI3K regulates the expression of these two proteins through HDM2 and p70S6K1 in human cancer cells. The frequent dysregulation of the PI3K/PTEN pathway in human cancer demonstrates that this pathway is an appropriate target for cancer therapeutics. In this review, we describe the recent advances in understanding the PI3K/PTEN pathway, the role and mechanism of PI3K in regulating tumor growth and angiogenesis, and the potential therapeutic opportunities for targeting this pathway for cancer treatment.  相似文献   

11.
Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.  相似文献   

12.
13.
人角膜内皮细胞的主要功能是维持角膜透明性,角膜内皮单层发育成熟形成细胞接触后,内皮细胞会停止分裂增殖,但并没有退出细胞周期。角膜内皮细胞的增殖有多种因素的参与和影响,接触抑制和G1期抑制使细胞增殖暂时停止;细胞因子TGF-β2抑制人角膜内皮细胞进入细胞周期S期,而EGF、FGF、NGF则能够促进细胞的增殖;ROCK抑制剂Y-27632能够促进角膜内皮细胞的粘连,有助于内皮细胞的损伤修复。体外培养角膜内皮前体细胞、诱导多潜能干细胞向角膜内皮细胞分化,为今后治疗角膜内皮失代偿提供了新方向。  相似文献   

14.
赵莹  杨福春  魏晓晴  吕广艳  崔颖  高颖 《生物磁学》2009,(17):3232-3234,3271
目的:探讨ROCK亚型ROCKⅠ和ROCKⅡ对血管平滑肌细胞(A7r5)迁移及增殖的影响。方法:利用Western blot技术检测ROCKⅠ和ROCKⅡ蛋白在A7r5细胞中的表达水平;利用siRNA技术使ROCKⅠ和ROCKⅡ基因表达分别下调,并检测基因下调后蛋白表达水平;利用Boyden小室法,观察ROCKⅠ和ROCKⅡ基因下调后及ROCK特异抑制剂Y-27632对PDGF诱导的A7r5细胞迁移的影响;使用MTT法检测ROCKⅠ和ROCKⅡ基因下调后对A7r5细胞生长曲线的影响。结果:ROCKⅠ和ROCKⅡ在A7r5细胞中的蛋白表达水平不同,ROCKⅡ较ROCKⅠ的表达水平高4倍;通过对A7r5细胞进行ROCKⅠ和ROCKⅡsiRNA转染,使二者蛋白表达水平分别下调83.4%和94.7%;基因表达下调后,ROCKⅠ明显抑制了PDGF诱导的A7r5细胞的迁移,而ROCKⅡ无明显影响,Y-27632也抑制了A7r5细胞的迁移;ROCKⅠ和ROCKⅡ基因下调后对A7r5细胞生长曲线的影响无明显差别。结论:ROCKⅠ在血管平滑肌细胞迁移过程中起主导作用,ROCKⅠ和ROCKⅡ对血管平滑肌细胞的增殖作用无明显差异。  相似文献   

15.
ObjectiveTo investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in rat mesangial cells cultured under high glucose (HG) conditions.MethodsRat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy.ResultsCompared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression.ConclusionsUrsolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.  相似文献   

16.
PI3K/Akt plays a critical role in prostate cancer cell growth and survival. Recent studies have shown that the effect of PI3K/Akt in prostate cells is mediated through androgen signaling. The PI3K inhibitor, LY294002, and a tumor suppressor, PTEN, negatively regulate the PI3K/Akt pathway and repress AR activity. However, the molecular mechanisms whereby PI3K/Akt and PTEN regulate the androgen pathway are currently unclear. Here, we demonstrate that blocking the PI3K/Akt pathway reduces the expression of an endogenous AR target gene. Moreover, we show that the repression of AR activity by LY294002 is mediated through phosphorylation and inactivation of GSK3beta, a downstream substrate of PI3K/Akt, which results in the nuclear accumulation of beta-catenin. Given the recent evidence that beta-catenin acts as a coactivator of AR, our findings suggest a novel mechanism by which PI3K/Akt modulates androgen signaling. In a PTEN-null prostate cancer cell line, we show that PTEN expression reduces beta-catenin-mediated augmentation of AR transactivation. Using the mutants of beta-catenin, we further demonstrate that the repressive effect of PTEN is mediated by a GSK3beta-regulated degradation of beta-catenin. Our results delineate a novel link among the PI3K, wnt, and androgen pathways and provide fresh insights into the mechanisms of prostate tumor development and progression.  相似文献   

17.
Angiopoietin‐2 (Ang2) is a Tie‐2 ligand that destabilizes vascular structures, allowing for neovascularization or vessel regression depending on local vascular endothelial cell growth factor (VEGF) concentrations. Although various stimuli have been shown to affect Ang2 expression, information on the underlying mechanisms involved in Ang2 production in endothelial cells (EC) is just beginning to emerge. In the present study, we have used adenovirus‐mediated gene transfer and pharmacological inhibitors to examine the role of the PTEN/PI3‐K/Akt pathway on Ang2 release. Inhibition of PI3‐kinase with wortmannin led to a stimulation of basal Ang2 release in EC, while overexpression of an active form of Akt reduced Ang2. In addition, adenovirus‐mediated gene transfer of the phosphatase PTEN stimulated Ang2 release. Incubation of the cells with Ang1, an agent that activates the PI3‐K/Akt pathway in EC, reduced Ang2 release. This effect of Ang1 could be prevented by wortmannin and LY‐294002 pretreatment. Similarly, in VEGF‐treated EC the increase in Ang2 production observed was greater in the presence of a PI3‐K inhibitor. Our observations that PTEN acts as a positive modulator of Ang2 release, while activation of the PI3‐K/Akt pathway downregulates Ang2, reveal an additional mechanism through which the PTEN/PI3‐K/Akt pathway could affect the angiogenic process. J. Cell. Physiol. 209: 239, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

18.
Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R 2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity.  相似文献   

19.
Here, we show a functional role of casein kinase I (CKI) epsilon in hematopoietic cell survival through the modification of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Introduction of wild-type (WT)-CKIepsilon into interleukin-3 (IL-3)-dependent 32D cells increased the sensitivity to genotoxic stresses, such as gamma-irradiation, etoposide, and IL-3 deprivation, whereas kinase-negative (KN)-CKIepsilon suppressed it. Contrary to KN-CKIepsilon, WT-CKIepsilon attenuated the IL-3-induced activation of Akt with the increase of PTEN activity. Similarly, the increase of Akt activation, as well as PTEN inactivation, was accompanied both by a decrease of CKIepsilon expression induced by all-trans retinoic acid and by the addition of a specific inhibitor for CKIepsilon in HL-60 cells. CKIepsilon seems to activate PTEN by physical interaction. These results suggest that the CKIepsilon-induced down-regulation of PI3K/Akt signaling through PTEN lead to amplified sensitivity to apoptosis. Thus, the suppression of CKIepsilon in many human leukemia cell lines may play a role in the cell immortalization.  相似文献   

20.
目的:明确FAP 是否通过RhoA/ROCK、Rac1-GTP 通路发挥促增殖、侵袭和迁移作用。方法:用MTT 实验,Transwell 实验 和迁移实验检测FAP、RhoA/ROCK、Rac1-GTP 对卵巢癌细胞系HO-8910PM 的增殖,侵袭和迁移的影响。结果:1、MTT 法,迁移和 侵袭实验证实用Y-27632 抑制RhoA/ROCK 途径能够促进卵巢癌细胞的增殖、迁移和侵袭,与FAP 联合作用时促进作用增强。 2、MTT 法, 迁移和侵袭实验证实NSC23766 抑制Rac1 途径能够抑制卵巢癌细胞的增殖、迁移和侵袭,与FAP 联合作用使FAP 的 促进作用减弱。结论:1、RhoA/ROCK 通路抑制HO-8910PM 细胞增殖、迁移和侵袭;Rac1-GTP 促进HO-8910PM 细胞增殖、迁移 和侵袭。2、FAP不是通过RhoA/ROCK而是通过Rac1-GTP 信号通路在HO-8910PM细胞发挥促增殖、迁移和侵袭作用的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号