首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paysandisia archon (Burmeister, 1880) (Lepidoptera: Castniidae) is a South American insect developing on palms and recently introduced in Europe where it damages most palm species. Understanding the oviposition behaviour would be decisive for risk assessment and pest management but key points on oviposition behaviour are missing. Using wind tunnel and field experiments, we investigated the oviposition timing, the attraction behaviour of mated females to palms and the different steps of oviposition behaviour. Results showed that oviposition behaviour occurred between 3 pm and 6 pm. In the field, gravid females were significantly more attracted by the palm crown than virgin females. The ovipositing females exhibited distinctive steps before ovipositing. Subsequent to alighting on the crown, pre-oviposition behaviour was characterized by two main behavioural steps: walking and probing the surface with antennae and ovipositor. After the choice of oviposition place, the gravid female remains motionless and the extendible ovipositor is deeply introduced into the upper fibrous part of the crown. About 10 eggs can be lays at the same place. Finally, the female starts to walk again and reinitiates the same behavioural sequences. This paper supports the hypothesis that odours from the crown may play a key role in gravid female attraction. The study assessed that P. archon lays on the palm crown, the part of the palm that should be treated for population monitoring.  相似文献   

2.
Paysandisia archon (Burmeister, 1880) is an attractive neotropical castniid moth whose presence in Europe was recently reported. Its larvae are endophagous, feeding inside the trunks and branches of several species of palm trees (Arecaceae). The present paper deals with the morphology and biometry of the egg of this moth, comparing them with those of other castniid species.

The egg is a typical castniid egg, fusiform, upright sensu Döring, light cream or creamy pink when freshly laid, 4.69 ± 0.37 mm long and 1.56 ± 0.11 mm wide. Larvae emerge by gently splitting the chorion along one of the longitudinal ridges, on the half closer to the micropyle. SEM, TEM and LSCM photographs showing ultrastructural details of the egg are shown for the first time. The micropylar rosette (c. 54 μm in diameter) has generally 14–17 cells; in its centre lies the micropylar pit (c. 6 μm in diameter) which bears 12–16 micropylar canal openings (= micropyles) around its periphery. The pathways followed by those canals through the chorion have been figured. Eggs sampled in the wild (so laid by several females) were found to have a slightly variable number of ridges: most bore seven ridges (68.87%), although a significant portion (30.46%) bore eight and 1 egg (0.67%) bore only six; this against the currently accepted rule of five‐ridged eggs for Castniini (i.e. Neotropical castniids) to which Paysandisia archon belongs. It has also been found that the same female specimen has the capability of producing six‐, seven‐ or eight‐ridged eggs. Five types of egg irregularities affecting the longitudinal ridges are also figured and described. Transverse striae on the egg of P. archon are about 122. Aeropyles (c. 4 μm in diameter) occur on the ridges, at the intersections between the latter and two contiguous (left and right of the ridge) transverse striae, amounting to c. 854 on a seven‐ridged egg and to c. 976 on an eight‐ridged egg. Occasionally minute aeropyles ('microaeropyles') (c. 1.96–3.13 μm in diameter) also occur on transverse striae located close to both egg poles.

The chorion of P. archon shows the typical ditrysian fine structure with very thin basal layer (C‐1), 0.3–0.2 μm thick, gas‐filled trabecular layer (C‐2), c. 0.9 μm thick, and lamellar layer (C‐3), its thickness varying between 18.5 and 13 μm due to the bumpy external surface of the chorion. Aeropylar canals, that penetrate layer C‐3, connect the air‐containing inner chorionic meshwork (the trabecular layer C‐2) with the surrounding air; their outer part forms a big bulbous cavity (which opens to the outside through the small opening seen in external SEM images) and, underneath, a narrow canal follows, leading into the trabecular layer (C‐2).  相似文献   

3.
苹浅褐卷蛾Epiphyas postvittana原产澳大利亚,是澳大利亚西南部、新西兰、英国及美国多种经济作物的重要害虫,目前尚未在全球范围广泛分布。由于其地理分布范围窄、寄主植物广泛、形态鉴定困难、能够对农作物造成较大的经济危害以及具有遗传多样性等特点,目前已被多数国家列为检疫对象并提出严格的检疫要求。而2007年该虫在美国加州地区的定殖使得研究人员对该虫能够造成的危害程度引起了再次的关注。在我国,该虫也被列为对外检疫对象,但是相关报道相对较少。作为检疫性害虫,对其相关信息的综合掌握是进一步进行有害生物风险分析的基础和保障。本文详细描述了苹浅褐卷蛾的地理分布、寄主范围、发生为害与环境条件的相互关系等,以期为该虫进行进一步风险分析及对其的检疫措施的制定和实施提供重要的信息与依据。  相似文献   

4.
In 2014, the Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae) was first spotted in northern Italy in the Nature Park of the Ticino Valley, its first detection in continental Europe. This polyphagous invasive species has the potential to cause serious losses to horticulture and agriculture. Particularly for its management in a Nature Park, environmentally friendly strategies are necessary. To develop baseline data for a biological control approach to the Italian outbreak of P. japonica, we conducted laboratory and field experiments testing several indigenous and commercial strains of the entomopathogenic nematode (EPN) species Heterorhabditis bacteriophora and Steinernema carpocapsae against P. japonica larvae. In the laboratory, strains of H. bacteriophora caused greater mortality (ranging from 57% to 100%) than those of S. carpocapsae (3% to 77%). In micro‐plot field tests carried out at three different times, the most virulent indigenous EPN strain, H. bacteriophora ItH‐LU1, showed again the best results ranging from 44% to 93% against young larvae. Finally, in a large‐plot field trial, the commercial H. bacteriophora product provided 46% larval mortality. This study shows that H. bacteriophora strains have good potential as biological control agents of larvae of the invasive P. japonica in northern Italy.  相似文献   

5.
苹果绵蚜是一种重要的外来人侵性害虫,在世界的各苹果种植区均有分布,对苹果造成严重危害。本文主要介绍了苹果绵蚜的生物学特性、发生危害特点以及各种防治措施,包括植物检疫、农业防治、生物防治、化学防治和抗性育种等,为在我国广大果区对苹果绵蚜进行综合治理提供依据。  相似文献   

6.
The spotted‐wing drosophila or cherry vinegar fly (Drosophila suzukii) is native to Asia but has invaded other continents since 2008 and has spread throughout Europe. The females have a serrated ovipositor allowing them to penetrate the skins of intact ripening fruits to deposit their eggs, and the developing larvae rapidly destroy the fruits close to harvest. Drosophila suzukii has a rapid life cycle and the larvae develop well beneath the fruit surface. This means that the use of pesticides is problematic and often not effective, first due to their restricted use close to harvest to protect consumers, and second because the larvae are deep enough inside the fruit to avoid contact. There are currently no effective and environmentally sustainable pest control methods for this species, resulting in extensive damage to fruit crops. Here, we review the current status of D. suzukii as a fruit crop pest and discuss the feasibility of current pesticide‐free control methods. We also consider the potential of new technologies as a basis for the urgently needed specific and long‐term control of this species.  相似文献   

7.
A total of 11 microsatellite loci from the invasive insect pest Liposcelis decolor were isolated and characterized of which six loci were polymorphic. A population survey involving a total of 30–192 individuals per locus from five populations revealed a range of four to seven alleles per locus and moderate observed heterozygosities (0.183–0.565), highlighting the utility of these loci in further population genetic studies. Cross‐species amplifications were successful for two to 11 loci in five other Liposcelis species also of international economic importance.  相似文献   

8.
Social insects present unique challenges to chemically based management strategies, especially because fast‐acting compounds commonly applied for many pest insects may not be the most effective for colony elimination. The reproductive caste of a colony is the most protected from direct damage by insecticides, and compounds that cause rapid mortality among foragers frequently do not impact the reproductive members or even markedly reduce overall colony size. With recent bans on persistent insecticides that previously have been used to control social insects, especially termites, new compounds must be used. Island and coastal ecosystems are particularly sensitive to the effects of widespread pesticide use and concerns about unintentional water pollution and runoff are common, and international attention is being paid to developing sustainable pesticide options for agricultural and urban pest insects in particularly sensitive environments. Given the precarious status of many native insects and arthropods care must be taken to minimize exposure to potentially harmful insecticides and the non‐target impacts of these chemicals. However, recent developments in the synthesis and discovery of highly selective insecticides with low mammalian and non‐target toxicity provide viable alternatives to the broad‐spectrum persistent organochlorine insecticides that have been largely deregistered. Novel technologies, particularly synthetic analogues of biologically active compounds, yield new chemical control options and management strategies for island and other sensitive ecosystems; case studies from Australia, the Galapagos Islands and New Zealand highlight current challenges and successes.  相似文献   

9.
The silver fir woolly adelgid, Dreyfusia nordmannianae, is the most severe pest occurring on Abies nordmanniana in Central and Northern Europe. The adelgid is particularly damaging to trees in Christmas tree plantations. Dreyfusia nordmannianae is native to the Caucasus region and alien to Europe, where its natural enemy complex is less diverse compared to its area of origin. Mitochondrial and nuclear DNA sequence data from the samples of D. nordmannianae collected in its native range and Europe and from the samples of Dreyfusia piceae and Dreyfusia prelli collected in Europe and North America were examined for phylogenetic structure. There was no evidence of differentiation, suggesting that these Dreyfusia species have recently diverged or require taxonomic revision. All existing published and unpublished reports on natural enemies of D. nordmannianae in its place of origin were reviewed, with the purpose of selecting agents for classical biological control in Europe. The literature review suggested that the most promising agent was the Chamaemyiidae fly, Leucopis hennigrata. A new survey in D. nordmannianae's area of origin – Turkey, Georgia and Russia – showed that L. hennigrata was present in all localities. It was particularly abundant in Turkey, where its impact on populations of D. nordmannianae appears to be high. Its use as a biological control agent is discussed, as well as other biological control strategies.  相似文献   

10.
This review relates the ecology and physiology of apple snails (Ampullariidae) to their impact on rice‐production systems. Two species in particular, Pomacea canaliculata and Pomacea maculata, have been introduced to several rice‐growing regions. Flooded rice systems represent a high‐quality habitat for these apple snails because of similarities in the environmental conditions (water temperature, salinity, pH, water flow velocity) necessary for both rice production and for snail survival and development. Furthermore, amphibious respiration, a capacity to aestivate during dry periods, as well as cold acclimation and tolerance (particularly in P. canaliculata), increases the resilience of apple snails to rice farming practices, including agrochemical applications, intermittent drainage and crop rotations – under a wide range of climatic conditions. Risks to regional rice production depend on four principal factors: these are (a) regional climate, (b) regional rice‐production systems, (c) prevailing production practices, and (4) the presence/absence of invasive, non‐native apple snails. Based on these criteria, lowland irrigated rice in tropical and subtropical regions that is wet‐direct seeded is most vulnerable to damage from both native and non‐native apple snails (albeit with greater losses from non‐native snails because of normally higher densities). Adequate quarantine regulations, particularly in vulnerable tropical regions that are adjacent to centres of recent outbreaks (e.g. India and Bangladesh adjacent to Myanmar, Peru and Colombia adjacent to Ecuador) and attention to the preparedness of farming systems could reduce potential impacts as these highly invasive snails continue to spread. The urgent development of labour‐saving crop‐establishment methods that reduce dependencies on chemical molluscicides is necessary to achieve sustainable rice production in regions at risk from non‐native apple snails.  相似文献   

11.
A retrospective analysis shows that invasive, alien, free-floating and emergent aquatic weeds in Europe are good targets for classical biological control, and that genus-specific chrysomelid and curculionid beetles offer the most potential. Ludwigia spp., Azolla filiculoides, Lemna minuta, Crassula helmsii and Hydrocotyle ranunculoides should be prioritised as targets. Fungal pathogens have been under-utilised as classical agents but, whilst they may have some potential against free-floating weeds, they appear to be poor candidates against submerged species, although the suitability of arthropod agents against these difficult targets still merits investigation. The use of indigenous pathogens as inundative agents (mycoherbicides) shows some promise.  相似文献   

12.
围绕入境台湾果蔬涉及的重要有害生物,在收集文献资料基础上,从传入和扩散、传入后的危害以及在中国大陆的适生区预测等3个方面阐述了橘小实蝇、三叶草斑潜蝇和螺旋粉虱在中国大陆的灾变过程。橘小实蝇、三叶草斑潜蝇和螺旋粉虱等3种有害生物相继传入台湾之后,分别经历了22年、17年和8年时间又相继传入中国大陆,且两者相距时间有缩短的趋势。橘小实蝇和三叶草斑潜蝇传入大陆后,得到迅速扩散蔓延,给大陆果蔬生产和贸易造成重大影响;而螺旋粉虱目前分布局限在海南,并在局部地区造成较严重的危害。台湾发生的有害生物在中国大陆均有较大范围的适生区,即便是已传入数十年的橘小实蝇,因气候等条件的变化,其在中国适生区也在扩大之中。根据分析结果,从有害生物风险分析、口岸查验和检疫、入侵害虫的监测与防控等方面提出有效管控入境台湾果蔬有害生物的对策措施。  相似文献   

13.
The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is a non‐native defoliating insect that continues to expand its range in North America and undergo periodic outbreaks. In management efforts to suppress outbreaks, slow its spread and eradicate populations that arrive outside of the invaded range, aerial deployments of mating disruption tactics and pesticides are generally used. However, in some cases, such as in heavily urbanized areas or other landscapes where aerial deployments are not feasible or permitted, ground applications are required. Ground applications tend to be labour‐intensive to ensure adequate coverage. To better inform optimal deployment of ground applications of mating disruption, we measured the effectiveness of a pheromone formulation designed for ground application, SPLAT® GM, in forested areas of Virginia from 2011 to 2014 using different dosages and number of point applications. We observed that SPLAT® GM applied to the tree trunks at the dosages of 49.4 and 123.6 g AI/ha in 11 × 11 systematic grids (i.e., every 11 m) reduced male trap catch by >90% relative to untreated control plots, which based on previous studies corresponds to >95% reduction in gypsy moth mating success. Our observations suggest that ground applications of gypsy moth mating disruption can be a successful management tool when circumstances require it.  相似文献   

14.
In recent decades, China has suffered severe attacks by both native and invasive forest pests. We have carried out a series of research projects on biological control of these pests. The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) has been sustainably controlled by an effective gregarious pupal endoparasitoid, Chouioia cunea Yang (Chalcidoidea: Eulophidae), which is native to China, and spraying HcNPV virus against the pest’s larval stage. Pine wilt disease, caused by the pine wood nematode (Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle) (Aphelenchida: Aphelenchidae), is currently the number one pest in China. The strategy for controlling the disease is to manipulate the nematode’s vector, Monochamus alternatus Hope (Coleoptera: Cerambycidae). We discovered that Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is the most important natural enemy in China pine forests. Mass rearing and release techniques were studied and developed. By releasing the parasitoid, 92.6% of the M. alternatus were parasitized in the first year. Meanwhile, three elaterid beetle species were found to prey on the larva of M. alternatus. The red turpentine beetle, Dendroctonus valens (LeConte) (Coleoptera:Scolytidae) was suppressed by a predator, Rhizophagus grandis Gyllenhal (Coleoptera: Rhizophagidae) introduced from Belgium and a total 3334 ha. of pine forests were protected. The oak longhorned beetle, Massicus raddei (Blessig) (Coleoptera: Cerambycidae) is the number one pest in the northeast forests of China, where it damages trunk of oaks, mainly Quercus liaotungensis and Q. mongolicus. An integrated management technique was developed for controlling the longhorned beetle: a special black light was invented for trapping the adults; the parasitoid Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae) was released against young larvae; and the parasitoid Dastarcus helophoroides eggs and/or adults were released when the hosts were mature larvae and/or pupae. By applying the technique for five years in northeastern China oak forests, the oak longhorned beetle has been controlled to a large extent. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to eastern Asia, including China, and feeding by larvae damages ash trees. Natural enemies of the emerald ash borer were investigated and seven species were found in China, of which Spathius agrili Yang (Hymenoptera: Braconidae), Tetrastichus planipennisi Yang (Hymenoptera: Eulophiae), Sclerodermus pupariae Yang et Yao and Oobius agrili Zhang et Huang (Hymenoptera: Encyrtidae) are predominant and have high potential for biocontrol of the pest. The biology, behavior, ecology and mass rearing techniques of the parasitoids were studied.  相似文献   

15.
16.
The spotted stem borer, Chilo partellus (Swinhoe, 1885) (Lepidoptera: Crambidae), an invasive pest of wild and cultivated grasses in Asia and Africa, was found for the first time during periodic surveys of maize fields in the East Mediterranean region of Turkey in September and October 2014. The pest was recorded in maize fields of three of four provinces surveyed (Adana, Hatay and Osmaniye; it was not detected in Icel province). The Mediterranean corn stalk borer, Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae), is the dominant maize pest in the East Mediterranean region of Turkey, followed by the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). The new invasive species comprised 4.9% of the total number of collected lepidopteran pests collected from maize stems and cobs in locations infested by C. partellus. No natural enemies of the new pest were recorded during our surveys. We discuss possible interactions among these three lepidopteran pests sharing the same habitat, prospects for control of C. partellus by the control methods currently used against S. nonagrioides and O. nubilalis, and also speculate on the path of invasion taken by C. partellus into Turkey.  相似文献   

17.
The red clover casebearer, Coleophora deauratella Lienig & Zeller (Lepidoptera: Coleophoridae), is an invasive pest of Trifolium species (Fabaceae) in Canada. We identified candidate sex pheromone components from female pheromone gland extracts using coupled gas chromatographic–electroantennographic analysis detection. Three compounds elicited an electrophysiological response from antennae and were identified as: (Z)‐7‐dodecenyl acetate, (Z)‐5‐dodecenyl acetate, and (Z)‐7‐dodecen‐1‐ol. Field tests of the candidate pheromone components revealed that males were attracted to a binary mixture of (Z)‐7‐dodecenyl acetate and (Z)‐5‐dodecenyl acetate. Male moth trap capture was greatest in traps baited with lures containing 100:10 or 100:20 ratios of these pheromone components, respectively. Trap capture was reduced when (Z)‐5‐dodecenyl acetate was present below 10 or above 20% of (Z)‐7‐dodecenyl acetate. Equal numbers of male moths were captured in traps baited with 10, 100, and 1 000 μg of the attractive binary mixture. These findings allow for the development of a pheromone‐based monitoring system for this invasive pest of clover in Canada.  相似文献   

18.
Control programs are implemented to mitigate the damage caused by invasive species worldwide. In the highly invaded Great Lakes, the climate is expected to become warmer with more extreme weather and variable precipitation, resulting in shorter iced‐over periods and variable tributary flows as well as changes to pH and river hydrology and hydrogeomorphology. We review how climate change influences physiology, behavior, and demography of a damaging invasive species, sea lamprey (Petromyzon marinus), in the Great Lakes, and the consequences for sea lamprey control efforts. Sea lamprey control relies on surveys to monitor abundance of larval sea lamprey in Great Lakes tributaries. The abundance of parasitic, juvenile sea lampreys in the lakes is calculated by surveying wounding rates on lake trout (Salvelinus namaycush), and trap surveys are used to enumerate adult spawning runs. Chemical control using lampricides (i.e., lamprey pesticides) to target larval sea lamprey and barriers to prevent adult lamprey from reaching spawning grounds are the most important tools used for sea lamprey population control. We describe how climate change could affect larval survival in rivers, growth and maturation in lakes, phenology and the spawning migration as adults return to rivers, and the overall abundance and distribution of sea lamprey in the Great Lakes. Our review suggests that Great Lakes sea lamprey may benefit from climate change with longer growing seasons, more rapid growth, and greater access to spawning habitat, but uncertainties remain about the future availability and suitability of larval habitats. Consideration of the biology of invasive species and adaptation of the timing, intensity, and frequency of control efforts is critical to the management of biological invasions in a changing world, such as sea lamprey in the Great Lakes.  相似文献   

19.
Determining the host–parasitoid interactions and parasitism rates for invasive species entering novel environments is an important first step in assessing potential routes for biocontrol and integrated pest management. Conventional insect rearing techniques followed by taxonomic identification are widely used to obtain such data, but this can be time‐consuming and prone to biases. Here, we present a next‐generation sequencing approach for use in ecological studies which allows for individual‐level metadata tracking of large numbers of invertebrate samples through the use of hierarchically organised molecular identification tags. We demonstrate its utility using a sample data set examining both species identity and levels of parasitism in late larval stages of the oak processionary moth (Thaumetopoea processionea—Linn. 1758), an invasive species recently established in the United Kingdom. Overall, we find that there are two main species exploiting the late larval stages of oak processionary moth in the United Kingdom with the main parasitoid (Carcelia iliaca—Ratzeburg, 1840) parasitising 45.7% of caterpillars, while a rare secondary parasitoid (Compsilura concinnata—Meigen, 1824) was also detected in 0.4% of caterpillars. Using this approach on all life stages of the oak processionary moth may demonstrate additional parasitoid diversity. We discuss the wider potential of nested tagging DNA metabarcoding for constructing large, highly resolved species interaction networks.  相似文献   

20.
Non-target impacts of poison baiting for predator control in Australia   总被引:1,自引:0,他引:1  
  • 1 Mammalian predators are controlled by poison baiting in many parts of the world, often to alleviate their impacts on agriculture or the environment. Although predator control can have substantial benefits, the poisons used may also be potentially harmful to other wildlife.
  • 2 Impacts on non‐target species must be minimized, but can be difficult to predict or quantify. Species and individuals vary in their sensitivity to toxins and their propensity to consume poison baits, while populations vary in their resilience. Wildlife populations can accrue benefits from predator control, which outweigh the occasional deaths of non‐target animals. We review recent advances in Australia, providing a framework for assessing non‐target effects of poisoning operations and for developing techniques to minimize such effects. We also emphasize that weak or circumstantial evidence of non‐target effects can be misleading.
  • 3 Weak evidence that poison baiting presents a potential risk to non‐target species comes from measuring the sensitivity of species to the toxin in the laboratory. More convincing evidence may be obtained by quantifying susceptibility in the field. This requires detailed information on the propensity of animals to locate and consume poison baits, as well as the likelihood of mortality if baits are consumed. Still stronger evidence may be obtained if predator baiting causes non‐target mortality in the field (with toxin detected by post‐mortem examination). Conclusive proof of a negative impact on populations of non‐target species can be obtained only if any observed non‐target mortality is followed by sustained reductions in population density.
  • 4 Such proof is difficult to obtain and the possibility of a population‐level impact cannot be reliably confirmed or dismissed without rigorous trials. In the absence of conclusive evidence, wildlife managers should adopt a precautionary approach which seeks to minimize potential risk to non‐target individuals, while clarifying population‐level effects through continued research.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号