首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
There are over one million described invertebrate species on Earth, the majority of which are likely to inhabit the highly biodiverse rain forests around the equator. These are some of the most vulnerable ecosystems on Earth due to the pressures of deforestation and climate change with many of their inhabitants at risk of extinction. Invertebrates play a major role in ecosystem functioning from decomposition and nutrient cycling to herbivory and pollination; however, while our understanding of these roles is improving, we are far from being able to predict the consequences of further deforestation, climate change, and biodiversity loss due to the lack of comparative data and the high proportion of species which remain to be discovered. As we move into an era of increased pressure on old-growth habitats and biodiversity, it is imperative that we understand how changes to invertebrate communities, and the extinction of species, affect ecosystems. Innovative and comprehensive methods that approach these issues are needed. Here, we highlight priorities for future tropical terrestrial invertebrate research such as the efficiency of sustainable land management, exploration of innovative methods for better understanding of invertebrate ecology and behavior, and quantifying the role of invertebrates in ecosystem functioning.  相似文献   

5.
Chronic heart failure is a major healthcare problem associated with high morbidity and mortality. Despite significant progress in treatment strategies, the prognosis of heart failure patients remains poor. The golden standard treatment for heart failure is heart transplantation after failure of medical therapy, surgery and/or cardiac resynchronisation therapy. In order to improve patients' outcome and quality of life, new emerging treatment modalities are currently being investigated, including mechanical cardiac support devices, of which the left ventricular assist device is the most promising treatment option. Structured care for heart failure patients according to the most recent international heart failure guidelines may further contribute to optimal decision-making. This article will review the conventional and novel treatment modalities of heart failure.  相似文献   

6.
Research in the exercise sciences: where do we go from here?   总被引:8,自引:0,他引:8  
The goal of this article is to provide a perspective on how research involving the acute and chronic effects of exercise (referred to as "exercise sciences") on the structure and function of organs systems will evolve in the next century. Within the last 30 years, exercise-related research has rapidly transitioned from an organ to a subcellular/molecular focus. Thus future research will continue to be heavily influenced by molecular biology tools, fueled by both emerging technologies (e.g., "gene-chip microarrays") designed to dissect gene function on a macro scale as well as by the completion of the human genome project in which the approximately 80,000 genes comprising humans will be completely sequenced. These successes will drive the emerging fields of functional genomics (the dissecting of a gene's identity and function) and proteomics (the study of the properties of proteins). Funding levels at the National Institutes of Health will likely increase in order to expand these emerging fields as well as provide avenues for translating fundamental knowledge into solving the complexities of a number of degenerative diseases influenced heavily by activity/inactivity factors such as cardiopulmonary disease, diabetes, obesity, and the debilitating disorders associated with aging. Thus there are many challenges facing future exercise scientists who must harness the new technologies and take an aggressive stance in bringing this important field to the forefront.  相似文献   

7.
8.
9.
10.
The purpose of this review is to describe the current status and to highlight several emerging trends in the manufacture of recombinant therapeutic proteins in cultivated mammalian cells, focusing on Chinese hamster ovary cells as the major production host. Over the past 25 years, specific and volumetric productivities for recombinant cell lines have increased about 20-fold as the result of improvements in media and bioprocess design. Future yield increases are expected to come from further developments in gene delivery and genetic selection for more efficient recovery of high-producing cell lines and in high-throughput cultivation systems to simplify medium design and bioprocess development. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight current research in our own laboratories.  相似文献   

11.
12.
Thanks to language, mankind is rapidly developing into a eusocial1 animal, within a single world-wide structure. Biological evolution based on random genetic events is no longer a part of the future of the species, and cultural evolution has taken its place. Ease of communication between minds means that distinction between individuals is becoming irrelevant. Future progress in the single world-wide community to which mankind is rapidly developing will rather be a self-guided process — evolution by self-design.   相似文献   

13.
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within‐generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.  相似文献   

14.
15.
Ripudaman K Bains is the editor of the Genome Biology special issue content on the ‘genomics of infectious diseases’, and introduces the collection in this editorial.  相似文献   

16.
Campylobacter species are widely regarded as the most frequent bacterial cause of gastroenteritis in humans worldwide. Their main transmission routes are via contaminated food and water. For interventions to be effective, methods for the detection, identification and epidemiological subtyping must be sensitive, accurate and rapid. As yet, methods are not perfect, although several significant advances have been made in these areas in recent years. This paper provides a brief review and commentary on the current state of the art in the hope that it will help provide context for others in selecting, improving or developing these vital tools for research and diagnoses.  相似文献   

17.
18.
Organophosphate (OP) poisoning is still associated with high morbidity and mortality rates, both in resource-poor settings and in well-developed countries. Despite numerous publications dealing with this particular poison, detailed clinical data on more severe overdoses with these agents are relatively sparsely reported. A retrospective study was consequently conducted on 33 patients with OP poisoning admitted to our intensive care unit (ICU) to provide additional data on clinical features. We included moderate to severe poisonings between 2000 and 2012 who required admission to ICU.  相似文献   

19.
20.
《TARGETS》2003,2(6):237-244
The subcellular localization of a protein can be very informative in identifying its function and in understanding the regulatory mechanisms by which it is controlled. Past efforts to define protein localization have typically entailed methods of immunological and fluorescence-based detection applied to a limited number of gene products. Several current studies are shifting this paradigm – utilizing traditional and novel approaches in molecular biology, proteomics, histochemistry and bioinformatics to define protein localization on a proteome-wide scale. Selected studies highlighting each of these approaches are presented here as an overview of the diverse avenues by which protein localization may be investigated for the identification of new drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号