首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate cancer (PCa) is a common high-incidence malignancy in men, some of whom develop biochemical recurrence (BCR) in the advanced stage. However, there are currently no accurate prognostic indicators of BCR in PCa. The aim of our study was to identify an autophagy-related circular RNA prognostic factor of BCR for patients with PCa. In this study, immunochemistry revealed that the classic autophagy marker MAP1LC3B was positively correlated with Gleason score. Least absolute shrinkage and selector operator regression were conducted to develop a novel prognostic model with tenfold cross-validation and an L1 penalty. Five autophagy-related circRNA signatures were included in the prognostic model. Patients with PCa were ultimately divided into high- and low-risk groups, based on the median risk score. Patients with PCa, who had a high risk score, were more likely to develop BCR in a shorter period of time. Univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent variable for predicting BCR in PCa. In addition, a prognostic nomogram integrated with the risk score and numerous clinicopathological parameters was developed to accurately predict 3- and 5-year BCR of patients with PCa. Finally, the hsa_circ_0001747 signature was selected for further experimental verification in vitro and in vivo, which showed that downregulated hsa_circ_0001747 might facilitate PCa via augmenting autophagy. Our findings indicate that the autophagy-related circRNA signature hsa_circ_0001747 may serve as a promising indicator for BCR prediction in patients with PCa.Subject terms: Tumour biomarkers, Macroautophagy  相似文献   

2.
BackgroundMany studies have demonstrated that autophagy plays a significant role in regulating tumor growth and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been analyzed in head and neck squamous cell carcinoma (HNSCC).MethodsWe obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas (TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)-related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses. With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respectively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships between risk signature and immune cell infiltration.ResultsWe established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves, survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells.ConclusionIn this study, we identified novel autophagy-related signature for the prediction of OS and DSS in patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC.  相似文献   

3.
李丽希  黄钢 《生物信息学》2022,20(3):218-226
对肺腺癌自噬相关基因进行生物信息学分析,结合多基因预后标志和临床参数构建能够预测肺腺癌患者预后的模型。首先,对TCGA肺腺癌数据中的938个自噬相关基因进行差异分析,获得了82个差异自噬相关基因,使用单因素Cox比例风险回归模型从差异自噬相关基因中筛选出候选基因,通过 lasso回归进一步筛选出预后相关基因,分别是ARNTL2、NAPSA、ATG9B、CAPN12、MAP1LC3C和KRT81。通过多因素Cox回归分析以构建风险评分模型,根据最优cutoff值将患者分为高低风险组,生存曲线显示高低风险组之间生存差异显著,ROC曲线显示风险评分的预测能力良好,并在内、外验证集中得到验证。同时对传统的临床因素进行单因素和多因素Cox回归分析,结果显示Stage、复发和风险评分能够独立预测预后,结合这三个独立的预后参数以构建列线图模型,使用一致性指数、校准曲线评估列线图的预测能力,结果显示预测结果与实际结果之间具有良好的一致性。通过与Stage和风险评分的比较发现,列线图的预测能力表现最佳。基于肺腺癌相关的自噬基因和临床参数构建了一个列线图模型来预测肺腺癌患者的预后生存,这可能为临床医生提供了一种可靠的预后评估工具。  相似文献   

4.
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endocrine therapy are at risk of disease recurrence and death. ER‐related genes are involved in the progression and chemoresistance of breast cancer. In this study, we identified an ER‐related gene signature that can predict the prognosis of ER‐positive breast cancer patient receiving endocrine therapy. We collected RNA expression profiling from Gene Expression Omnibus database. An ER‐related signature was developed to separate patients into high‐risk and low‐risk groups. Patients in the low‐risk group had significantly better survival than those in the high‐risk group. ROC analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis demonstrated that the ER‐related signature was an independent risk factor when adjusting for several clinical signatures. The prognostic value of this signature was validated in the validation sets. In addition, a nomogram was built and the calibration plots analysis indicated the good performance of this nomogram. In conclusion, combining with ER status, our results demonstrated that the ER‐related prognostic signature is a promising method for predicting the prognosis of ER‐positive breast cancer patients receiving endocrine therapy.  相似文献   

5.
Long non-coding RNAs (lncRNAs) are well known as crucial regulators to breast cancer development and are implicated in controlling autophagy. LncRNAs are also emerging as valuable prognostic factors for breast cancer patients. It is critical to identify autophagy-related lncRNAs with prognostic value in breast cancer. In this study, we identified autophagy-related lncRNAs in breast cancer by constructing a co-expression network of autophagy-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA). We evaluated the prognostic value of these autophagy-related lncRNAs by univariate and multivariate Cox proportional hazards analyses and eventually obtained a prognostic risk model consisting of 11 autophagy-related lncRNAs (U62317.4, LINC01016, LINC02166, C6orf99, LINC00992, BAIAP2-DT, AC245297.3, AC090912.1, Z68871.1, LINC00578 and LINC01871). The risk model was further validated as a novel independent prognostic factor for breast cancer patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, based on the risk model, the low-risk and high-risk groups displayed different autophagy and oncogenic statues by principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation. Taken together, these findings suggested that the risk model of the 11 autophagy-related lncRNAs has significant prognostic value for breast cancer and might be autophagy-related therapeutic targets in clinical practice.  相似文献   

6.

Autophagy is a highly conserved lysosomal degradation process essential in tumorigenesis. However, the involvement of autophagy-related long noncoding RNAs (lncRNAs) in low-grade glioma (LGG) remains unclear. In this study, we established an autophagy-related lncRNA prognostic signature for patients with LGG and assess its underlying functions. We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish an autophagy-related lncRNA prognostic signature. Kaplan–Meier survival analysis, receiver operating characteristic curve, nomogram, C-index, calibration curve and clinical decision-making curve were used to assess the predictive capability of the identified signature. A signature comprising nine autophagy-related lncRNAs (AL136964.1, ARHGEF26-AS1, PCED1B-AS1, AS104072.1, PRKCQ-AS1, LINC00957, AS125616.1, PSMB8-AS1 and AC087741.1) was identified as a prognostic model. Patients with LGG were divided into the high- and low-risk cohorts based on the median model-based risk score. The survival analysis revealed a 10-year survival rate of 9.3% (95% CI 1.91–45.3%) and 13.48% (95% CI 4.52–40.2%) in high-risk patients in the training and validation sets, respectively, and 48.4% (95% CI 24.7–95.0%) and 48.4% (95% CI 28.04–83.4%) in low-risk patients in the training and validation sets, respectively. This finding suggested a relatively low survival in high-risk patients. In addition, the lncRNA signature was independently prognostic and potentially associated with the progression of LGG. Therefore, the 9-autophagy-related-lncRNA signature may play a crucial role in the diagnosis and treatment of LGG, which may offer new avenues for tumour-targeted therapy.

  相似文献   

7.
BackgroundApoptosis played vital roles in the formation and progression of osteosarcoma. However, no studies elucidated the prognostic relationships between apoptosis-associated genes (AAGs) and osteosarcoma.MethodsThe differentially expressed genes associated with osteosarcoma metastasis and apoptosis were identified from GEO and MSigDB databases. The apoptosis-associated prognostic signature was established through univariate and multivariate cox regression analyses. The Kaplan–Meier (KM) survival curve, ROC curve and nomogram were constructed to investigate the predictive value of this signature. CIBERSORT algorithm and ssGSEA were used to explore the relationships between immune infiltration and AAG signature. The above results were validated in another GEO dataset and the expression of AAGs was also validated in osteosarcoma patient samples by immunohistochemistry.ResultsHSPB1 and IER3 were involved in AAG signature. In training and validation datasets, apoptosis-associated risk scores were negatively related to patient survival rates and the AAG signature was regarded as the independent prognostic factor. ROC and calibration curves demonstrated the signature and nomogram were reliable. GSEA revealed the signature related to immune-associated pathways. ssGSEA indicated that one immune cell and three immune functions were significantly dysregulated. The immunohistochemistry analyses of patients’ samples revealed that AAGs were significantly differently expressed between metastasis and non-metastasis osteosarcomas.ConclusionsThe present study identified and validated a novel apoptosis-associated prognostic signature related to osteosarcoma metastasis. It could serve as the potential biomarker and therapeutic targets for osteosarcoma in the future.  相似文献   

8.
本研究旨在探讨自噬基因CTSL对胶质母细胞瘤(GBM)患者的预后影响。利用癌症基因组图谱(TCGA)、人类自噬数据库(HADB)、中国脑胶质瘤基因组图谱(CGGA)数据库、基因表达谱分析(GEPIA)获取数据信息,通过筛选差异表达基因及单因素和多因素COX分析确定GBM的独立预后危险因素,同时通过基因本体论(GO)、基因组百科全书途径(KEGG)、临床病理相关性、基因集富集分析(GSEA)、自噬基因网络分析CTSL的相关作用机制。结果显示:(1)富集分析显示胶质母细胞瘤中差异自噬基因(ARG)与自噬体的形成、细胞凋亡、血管生成、细胞化疗等相关;(2)GBM中CTSL的mRNA水平明显高于正常组织样本;(3)多因素COX回归分析显示自噬基因CTSL的高表达为GBM预后的独立危险因素,STUPP治疗(术后替莫唑胺[Tmz]同步放化疗+Tmz辅助化疗)为独立保护因素;(4)自噬基因CTSL在非GCIMP(CpG岛甲基化)型、间质型、IDH野生型、1p/19q无缺失型胶质母细胞瘤及化疗后表达量更高。综上所述,本研究分析了自噬基因在GBM中的作用,并表明自噬基因CTSL的过表达预示胶质母细胞瘤患者不良预后,显示自噬基因CTSL有作为有效靶标的潜质。  相似文献   

9.
Accumulating evidence revealed that autophagy played vital roles in breast cancer (BC) progression. Thus, the aim of this study was to investigate the prognostic value of autophagy‐related genes (ARGs) and develop a ARG‐based model to evaluate 5‐year overall survival (OS) in BC patients. We acquired ARG expression profiling in a large BC cohort (N = 1007) from The Cancer Genome Atlas (TCGA) database. The correlation between ARGs and OS was confirmed by the LASSO and Cox regression analyses. A predictive model was established based on independent prognostic variables. Thus, time‐dependent receiver operating curve (ROC), calibration plot, decision curve and subgroup analysis were conducted to determine the predictive performance of ARG‐based model. Four ARGs (ATG4A, IFNG, NRG1 and SERPINA1) were identified using the LASSO and multivariate Cox regression analyses. A ARG‐based model was constructed based on the four ARGs and two clinicopathological risk factors (age and TNM stage), dividing patients into high‐risk and low‐risk groups. The 5‐year OS of patients in the low‐risk group was higher than that in the high‐risk group (P < 0.0001). Time‐dependent ROC at 5 years indicated that the four ARG–based tool had better prognostic accuracy than TNM stage in the training cohort (AUC: 0.731 vs 0.640, P < 0.01) and validation cohort (AUC: 0.804 vs 0.671, P < 0.01). The mutation frequencies of the four ARGs (ATG4A, IFNG, NRG1 and SERPINA1) were 0.9%, 2.8%, 8% and 1.3%, respectively. We built and verified a novel four ARG–based nomogram, a credible approach to predict 5‐year OS in BC, which can assist oncologists in determining effective therapeutic strategies.  相似文献   

10.
《Genomics》2021,113(2):740-754
Clear-cell renal cell carcinoma (ccRCC) carries a variable prognosis. Prognostic biomarkers can stratify patients according to risk, and can provide crucial information for clinical decision-making. We screened for an autophagy-related long non-coding lncRNA (lncRNA) signature to improve postoperative risk stratification in The Cancer Genome Atlas (TCGA) database. We confirmed this model in ICGC and SYSU cohorts as a significant and independent prognostic signature. Western blotting, autophagic-flux assay and transmission electron microscopy were used to verify that regulation of expression of 8 lncRNAs related to autophagy affected changes in autophagic flow in vitro. Our data suggest that 8-lncRNA signature related to autophagy is a promising prognostic tool in predicting the survival of patients with ccRCC. Combination of this signature with clinical and pathologic parameters could aid accurate risk assessment to guide clinical management, and this 8-lncRNAs signature related to autophagy may serve as a therapeutic target.  相似文献   

11.
Our study aims at developing an interferon-stimulated genes (ISGs) signature that could predict overall survival (OS) in cancer patients, which enrolled a total of 5643 pan-cancer patients. Linear models for microarray data method analysis were conducted to identify the differentially expressed prognostic genes in the global ISGs family. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival analysis were used to test the efficiency of a multi-gene signature in predicting the prognosis of pan-cancer patients. The prognostic performance and potential biological function of gene signature were verified by quantitative real-time PCR in a pan-cancer independent cohort. Three ISGs genes were finally identified to build a classifier, a specific risk score formula, with which patients were classified into the low- or high-risk groups. Time-dependent ROC analyses proved prognostic accuracy. Then, its prognostic value was validated in seven external validation series. A nomogram was constructed to guide the individualized treatment of patients with lung adenocarcinoma. Biological pathway and tumor immune infiltration analysis showed that the signature might cause poor prognosis by blocking NK cell activation. Finally, the signature in our centers was confirmed by real-time quantitative PCR. A robust ISGs-related feature was discovered to effectively classify pan-cancer patients into subgroups with different OS.  相似文献   

12.
Nowadays, gene expression profiling has been widely used in screening out prognostic biomarkers in numerous kinds of carcinoma. Our studies attempt to construct a clinical nomogram which combines risk gene signature and clinical features for individual recurrent risk assessment and offer personalized managements for clear cell renal cell carcinoma. A total of 580 differentially expressed genes (DEGs) were identified via microarray. Functional analysis revealed that DEGs are of fundamental importance in ccRCC progression and metastasis. In our study, 338 ccRCC patients were retrospectively analysed and a risk gene signature which composed of 5 genes was obtained from a LASSO Cox regression model. Further analysis revealed that identified risk gene signature could usefully distinguish the patients with poor prognosis in training cohort (hazard ratio [HR] = 3.554, 95% confidence interval [CI] 2.261‐7.472, P < .0001, n = 107). Moreover, the prognostic value of this gene‐signature was independent of clinical features (P = .002). The efficacy of risk gene signature was verified in both internal and external cohorts. The area under receiver operating characteristic curve of this signature was 0.770, 0.765 and 0.774 in the training, testing and external validation cohorts, respectively. Finally, a nomogram was developed for clinicians and did well in the calibration plots. This nomogram based on risk gene signature and clinical features might provide a practical way for recurrence prediction and facilitating personalized managements of ccRCC patients after surgery.  相似文献   

13.
Increasing evidences have showed that autophagy played a significant role in oral squamous cell carcinoma (OSCC). Purpose of our study was to explore the prognostic value of autophagy-related genes (ATGs) and screen autophagy-related biomarkers for OSCC. RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database following extracting ATG expression profiles. Then, differentially expressed analysis was performed in R software and a risk score model according to ATGs was established. Moreover, comprehensive bioinformatics analyses were used to screen autophagy-related biomarkers which were later verified in OSCC tissues and cell lines. A total of 232 ATGs were extracted, and 37 genes were differentially expressed in OSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these genes were mainly located in autophagosome membrane and associated with autophagy. Furthermore, the risk score on basis of ATGs was identified as potential independent prognostic biomarker. Moreover, ATG12 and BID were identified as potential autophagy-related biomarkers of OSCC. This study successfully constructed a risk model, and the risk score could predict the prognosis of OSCC patients accurately. Moreover, ATG12 and BID were identified as two potential independent prognostic autophagy-related biomarkers and might provide new OSCC therapeutic targets.  相似文献   

14.
15.
Endometrial carcinoma (EnCa) is one of the deadliest gynecological malignancies. The purpose of the current study was to develop an immune-related lncRNA prognostic signature for EnCa. In the current research, a series of systematic bioinformatics analyses were conducted to develop a novel immune-related lncRNA prognostic signature to predict disease-free survival (DFS) and response to immunotherapy and chemotherapy in EnCa. Based on the newly developed signature, immune status and mutational loading between high‑ and low‑risk groups were also compared. A novel 13-lncRNA signature associated with DFS of EnCa patients was ultimately developed using systematic bioinformatics analyses. The prognostic signature allowed us to distinguish samples with different risks with relatively high accuracy. In addition, univariate and multivariate Cox regression analyses confirmed that the signature was an independent factor for predicting DFS in EnCa. Moreover, a predictive nomogram combined with the risk signature and clinical stage was constructed to accurately predict 1-, 2-, 3-, and 5-year DFS of EnCa patients. Additionally, EnCa patients with different levels of risk had markedly different immune statuses and mutational loadings. Our findings indicate that the immune-related 13-lncRNA signature is a promising classifier for prognosis and response to immunotherapy and chemotherapy for EnCa.  相似文献   

16.
Diffuse large B-cell lymphoma (DLBCL) is a clinically diverse disease. Given the numerous genetic mutations and variations associated with it, a prognostic gene signature that can be related to the overall survival (OS) is a clinical implication. We used the mRNA expression profiles and clinicopathological data of patients with DLBCL from the Gene Expression Omnibus (GEO) database to identify a metabolism-related gene signature. Using LASSO regression analysis, a novel 13-metabolic gene signature was identified to evaluate prognosis. The information gathered was used to construct the nomogram model to improve risk stratification and quantify risk factors for individual patients. We performed gene set enrichment analysis to identify the enriched signalling axes to further understand the underlying biological pathways. The receiver operating characteristic (ROC) curve revealed a satisfactory performance in the training cohorts. The model also showed clinical benefit when compared to the standard prognostic factors (P < .05) in validation cohorts. This study aimed to combine metabolic dysregulation with clinical features of patients with DLBCL to generate a prognostic model that might not only indicate the value of the metabolic microenvironment for prognostic stratification but also improve the decision-making during individual therapy.  相似文献   

17.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

18.
构建由自噬相关基因组成的预后模型,预测肝细胞癌(HCC)患者的生存预后情况,为其个性化诊疗和临床研究提供依据.利用TCGA数据库中HCC的测序信息与人类自噬数据库联合,筛选差异表达的自噬相关基因,对其进行GO富集与KEGG通路分析;通过单因素与多因素Cox分析筛选与患者生存预后明显相关的风险基因,构建预后风险评分模型;...  相似文献   

19.
Increasing evidence suggested DNA methylation may serve as potential prognostic biomarkers; however, few related DNA methylation signatures have been established for prediction of lung cancer prognosis. We aimed at developing DNA methylation signature to improve prognosis prediction of stage I lung adenocarcinoma (LUAD). A total of 268 stage I LUAD patients from the Cancer Genome Atlas (TCGA) database were included. These patients were separated into training and internal validation datasets. GSE39279 was used as an external validation set. A 13‐DNA methylation signature was identified to be crucially relevant to the relapse‐free survival (RFS) of patients with stage I LUAD by the univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox proportional hazard analysis in the training dataset. The Kaplan‐Meier analysis indicated that the 13‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in entire TCGA dataset, internal validation and external validation datasets. The receiver operating characteristic (ROC) analysis further verified that the 13‐DNA methylation signature had a better value to predict the RFS of stage I LUAD patients in internal validation, external validation and entire TCGA datasets. In addition, a nomogram combining methylomic risk scores with other clinicopathological factors was performed and the result suggested the good predictive value of the nomogram. In conclusion, we successfully built a DNA methylation‐associated nomogram, enabling prediction of the RFS of patients with stage I LUAD.  相似文献   

20.
Long non-coding RNA (lncRNA) is an important regulatory factor in the development of lung adenocarcinoma, which is related to the control of autophagy. LncRNA can also be used as a biomarker of prognosis in patients with lung adenocarcinoma. Therefore, it is important to determine the prognostic value of autophagy-related lncRNA in lung adenocarcinoma. In this study, autophagy-related mRNAs-lncRNAs were screened from lung adenocarcinoma and a co-expression network of autophagy-related mRNAs-lncRNAs was constructed by using The Cancer Genome Atlas (TCGA). The univariate and multivariate Cox proportional hazard analyses were used to evaluate the prognostic value of the autophagy-related lncRNAs and finally obtained a survival model composed of 11 autophagy-related lncRNAs. Through Kaplan-Meier analysis, univariate and multivariate Cox regression analysis and time-dependent receiver operating characteristic (ROC) curve analysis, it was further verified that the survival model was a new independent prognostic factor for patients with lung adenocarcinoma. In addition, based on the survival model, gene set enrichment analysis (GSEA) was used to illustrate the function of genes in low-risk and high-risk groups. These 11 lncRNAs were GAS6-AS1, AC106047.1, AC010980.2, AL034397.3, NKILA, AL606489.1, HLA-DQB1-AS1, LINC01116, LINC01806, FAM83A-AS1 and AC090559.1. The hazard ratio (HR) of the risk score was 1.256 (1.196-1.320) (P < .001) in univariate Cox regression analysis and 1.215 (1.149-1.286) (P < .001) in multivariate Cox regression analysis. And the AUC value of the risk score was 0.809. The 11 autophagy-related lncRNA survival models had important predictive value for the prognosis of lung adenocarcinoma and may become clinical autophagy-related therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号