首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of summertime movement and habitat use of yellow‐stage American eels Anguilla rostrata within York River and estuary and Gaspé Bay (Gaspesia, Québec, Canada) were examined using acoustic telemetry. Fifty fish were tagged with acoustic transmitters and released, either in the river or in the upper estuary, and their patterns of movement and habitat use were monitored at short spatial and temporal scales during the summer months using a dense hydrophone array. Approximately half of the fish released in the river swam to the estuary; two‐thirds of the fish released within the estuary did not move out of the estuary. Anguilla rostrata were detected more frequently and had a greater areal range of detections during night, suggesting greater nocturnal activity. Longitudinal movements within the estuary tended to occur nocturnally, with upstream movements from early to late evening, and downstream movements from late evening to early morning. Approximately one‐third of fish showed a regular pattern of movement, tending to reside in the deeper, downstream part of the estuary during day and in the shallower, more upstream part of the estuary during night. Approximately a quarter of fish, located in the upper estuary, remained upstream during both night and day. The remaining fish showed patterns intermediate between these two.  相似文献   

2.
American eels Anguilla rostrata , collected from three distinct locations along the St Lawrence River (Lake St Lawrence, Quebec City and Kamouraska), were thought to consist entirely of out-migrating adults at Quebec City and Kamouraska and of both resident and migrants at Lake St Lawrence. The mean plasma levels of 17β-oestradiol closely paralleled the trend observed with gonadosomatic index (IG) and oocyte development. The highest levels of 17βoestradiol and IG were observed in Quebec City and Kamouraska, while the levels observed in the resident eels from Lake St Lawrence were very low. Generally, the concentration of total plasma non-esterified fatty acids (NEFA) appeared to follow the trend of 17β-oestradiol and IG and increased with sexual maturity. However, the most sexually mature group, eels from Kamouraska, had the lowest total plasma NEFA levels. The reason for the drop is not clear at present. In addition, a number of shifts in the plasma NEFA profiles of American eels did occur during their migration in a downstream direction, with several fatty acids either increasing or decreasing in relative abundance. The ratio of n3: n6 fatty acids declined with increasing sexual maturity as most n3 fatty acids became less abundant. Although the correlation between gonadal development and the relative concentration of individual fatty acids was not always clear, both arachidonic acid (20: 4n6) and docosahexaenoic acid (22: 6n3) were significantly higher in the plasma of out-migrating adults than in resident yellow phase eels.  相似文献   

3.
4.
5.
6.
By HPLC, a taurine-conjugated bile acid with a retention time different from that of taurocholate was found to be present in the bile of the black-necked swan, Cygnus melanocoryphus. The bile acid was isolated and its structure, established by (1)H and (13)C NMR and mass spectrometry, was that of the taurine N-acyl amidate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid. The compound was shown to have chromatographic and spectroscopic properties that were identical to those of the taurine conjugate of authentic 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid, previously synthesized by us from ursodeoxycholic acid. By HPLC, the taurine conjugate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid was found to be present in 6 of 6 species in the subfamily Dendrocygninae (tree ducks) and in 10 of 13 species in the subfamily Anserinae (swans and geese) but not in other subfamilies in the Anatidae family. It was also not present in species from the other two families of the order Anseriformes. 3alpha,7alpha,15alpha-Trihydroxy-5beta-cholan-24-oic acid is a new primary bile acid that is present in the biliary bile acids of swans, tree ducks, and geese and may be termed 15alpha-hydroxy-chenodeoxycholic acid.  相似文献   

7.
The major bile acids present in the gallbladder bile of the common Australian wombat (Vombatus ursinus) were isolated by preparative HPLC and identified by NMR as the taurine N-acylamidates of chenodeoxycholic acid (CDCA) and 15alpha-hydroxylithocholic acid (3alpha,15alpha-dihydroxy-5beta-cholan-24-oic acid). Taurine-conjugated CDCA constituted 78% of biliary bile acids, and (taurine-conjugated) 15alpha-hydroxylithocholic acid constituted 11%. Proof of structure of the latter compound was obtained by its synthesis from CDCA via a Delta14 intermediate. The synthesis of its C-15 epimer, 15beta-hydroxylithocholic acid (3alpha,15beta-dihydroxy-5beta-cholan-24-oic acid), is also reported. The taurine conjugate of 15alpha-hydroxylithocholic acid was synthesized and shown to have chromatographic and spectroscopic properties identical to those of the compound isolated from bile. It is likely that 15alpha-hydroxylithocholic acid is synthesized in the wombat hepatocyte by 15alpha-hydroxylation of lithocholic acid that was formed by bacterial 7alpha-dehydroxylation of CDCA in the distal intestine. Thus, the wombat appears to use 15alpha-hydroxylation as a novel detoxification mechanism for lithocholic acid.  相似文献   

8.
Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α‐hydroxyl group. The rate‐determining enzyme in this pathway is bile acid 7α‐dehydratase (baiE). In this study, crystal structures of apo‐BaiE and its putative product‐bound [3‐oxo‐Δ4,6‐lithocholyl‐Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site‐directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady‐state kinetic studies reveal that the BaiE homologs are able to turn over 3‐oxo‐Δ4‐bile acid and CoA‐conjugated 3‐oxo‐Δ4‐bile acid substrates with comparable efficiency questioning the role of CoA‐conjugation in the bile acid metabolism pathway. Proteins 2016; 84:316–331. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
In the last 25 years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled ‘core’ pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

10.
It has been proposed that intracellular carrier proteins mediate active transport of the bile acids within hepatocytes and ileocytes, during the enterohepatic circulation. In mammalian species only ileal bile acid binding proteins have been so far identified, while liver cytosolic carriers have never been found. On the contrary, in non-mammalian vertebrates, only liver, and not ileal, bile acid binding proteins were reported. The aim of the present work is to find the missing cytosolic transport proteins. A bioinformatic search allowed us to identify a non-mammalian putative bile acid binding protein in the chicken ileum (cI-BABP), which we recombinantly expressed and purified. The protein exhibits the capability, tested by in vitro NMR experiments, of binding bile acids. Furthermore, strong NMR evidence reported that the human liver fatty acid binding protein (hL-FABP) can also bind bile acids. Taken together, these data strongly suggest that both cI-BABP and hL-FABP have a bile acid binding function in the two organisms, and support a previous hypothesis on the role of hL-FABP in regulating bile acid metabolism and determining bile acid pool size.  相似文献   

11.
Bile acid malabsorption, which in patients leads to excessive fecal bile acid excretion and diarrhea, is characterized by a vicious cycle in which the feedback regulation of bile acid synthesis is interrupted, resulting in additional bile acid production. Feedback regulation of bile acid synthesis is under the control of an endocrine pathway wherein activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), induces enteric expression of the hormone, fibroblast growth factor 15 (FGF15). In liver, FGF15 acts together with FXR-mediated expression of small heterodimer partner to repress bile acid synthesis. Here, we show that the FXR-FGF15 pathway is disrupted in mice lacking apical ileal bile acid transporter, a model of bile acid malabsorption. Treatment of Asbt-/- mice with either a synthetic FXR agonist or FGF15 downregulates hepatic cholesterol 7alpha-hydroxylase mRNA levels, decreases bile acid pool size, and reduces fecal bile acid excretion. These findings suggest that FXR agonists or FGF15 could be used therapeutically to interrupt the cycle of excessive bile acid production in patients with bile acid malabsorption.  相似文献   

12.
AIMS: To assess the suitability of bifidobacteria for inclusion in synbiotic products on the basis of carbohydrate preference, acid and bile tolerance. METHODS AND RESULTS: Five strains of Bifidobacterium were analysed for their carbohydrate preference from 12 substrates. Maximum growth rates were used to compare substrate preferences. Galacto-oligosaccharides and isomalto-oligosaccharides were well utilized by all the test species. Most bacteria tested could also utilize at least one type of fructan molecule. To determine transit tolerance of potentially probiotic bifidobacteria, acid and bile resistance was tested. A wide range acid resistance was found. Bile tolerance also varied. CONCLUSIONS: GOS and IMO were generally well utilized by the tested species. Other substrates were used to different degrees by the different species. Most bifidobacteria are poorly resistant to strongly acidic conditions with the exception of Bifidobacterium lactis Bb12. Bile tolerances were widely variable and it was shown that caution should be exercised when using colorimetric methods to assess bile tolerance. SIGNIFICANCE AND IMPACT OF STUDY: The study allows the comparison of the properties of bifidobacteria, allowing a cost effective screen for the best species for use in synbiotic products to allow better survival and efficacy.  相似文献   

13.
Bile acid coenzyme A:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids glycine and taurine. To quantify total BAT activity in liver subcellular organelles, livers from young adult male and female Sprague-Dawley rats were fractionated into multiple subcellular compartments. In male and female rats, 65-75% of total liver BAT activity was found in the cytosol, 15-17% was found in the peroxisomes, and 5-10% was found in the heavy mitochondrial fraction. After clofibrate treatment, male rats displayed an increase in peroxisomal BAT specific activity and a decrease in cytosolic BAT specific activity, whereas females showed an opposite response. However, there was no overall change in BAT specific activity in whole liver homogenate. Treatment with rosiglitazone or cholestyramine had no effect on BAT activity in any subcellular compartment. These experiments indicate that the majority of BAT activity in the rat liver resides in the cytosol. Approximately 15% of BAT activity is present in the peroxisomal matrix. These data support the novel finding that clofibrate treatment does not directly regulate BAT activity but does alter the subcellular localization of BAT.  相似文献   

14.
Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data. Docking resulted in good 3D models, satisfying the majority of experimental restraints. The docking procedure represents a necessary step to help in the structure determination and in functional analysis of such systems, in view of the high complexity of the 3D structure determination of a ternary complex with two identical ligands. HADDOCK models show that residues involved in binding are mainly located in the C-terminal end of the protein, with two loops, CD and EF, playing a major role in ligand binding. A spine, comprising polarresidues pointing toward the protein interior and involved in motion communication, has a prominent role in ligand interaction. The modeling approach has been complemented with NMR interaction and competition studies of cL-BABP with chenodeoxycholic and cholic acids. A higher affinity for chenodeoxycholic acid was observed and a Kd upper limit estimate was obtained. The binding is highly cooperative and no site selectivity was detected for the different bile salts, thus indicating that site selectivity and cooperativity are not correlated. Differences in physiological pathways and bile salt pools in different species is discussed in light of the binding results thus enlarging the body of knowledge of BABPs biological functions.  相似文献   

15.
16.
Acetic acid bacteria are used in the commercial production of lactobionic acid (LacA). However, the lactose-oxidizing enzyme of these bacteria remains unidentified. Lactose-oxidizing activity has been detected in bacterial membrane fractions and is strongly inhibited by d-glucose, suggesting that the enzyme was a membrane-bound quinoprotein glucose dehydrogenase, but these dehydrogenases have been reported to be incapable of oxidizing lactose. Thus, we generated m-GDH-overexpressing and -deficient strains of Komagataeibacter medellinensis NBRC3288 and investigated their lactose-oxidizing activities. Whereas the overexpressing variants produced ~2–5-fold higher amounts of LacA than the wild-type strains, the deficient variant produced no LacA or d-gluconic acid. Our results indicate that the lactose-oxidizing enzyme from acetic acid bacteria is membrane-bound quinoprotein glucose dehydrogenase.

Abbreviations: LacA: lactobionic acid; AAB: acetic acid bacterium; m-GDH: membrane-bound quinoprotein glucose dehydrogenase; DCIP: 2,6-dichlorophenolindophenol; HPAEC-PAD: high-performance anion-exchange chromatography with pulsed amperometric detection  相似文献   


17.
We have developed a chemiluminescent flow injection method for analysis of bile acid, glucose and ATP using the chemiluminescent assay of NADH using 1-methoxy-5-methylphenazinium methyl sulphate (1-MPMS)/isoluminol(IL)/microperoxidase (m-POD) system and immobilized enzyme reactors such as 3α-hydroxysteroid dehydrogenase, glucosedehydrogenase, hexokinase and glucose-6-phosphate dehydrogenase. The standard curves were obtained in the range of 5 ~ 100 pmol for bile acid, 0.5 ~ 5.0 nmol for glucose and 10?7 ~ 10?5 mol/L for ATP. The coefficient of variation for each assay was not more than 4.1% for bile acid, 2.3% for glucose and 5.3% for ATP, respectively.  相似文献   

18.
19.
Bile acids and cholesterol metabolism exhibits distinct daily rhythms and uridine closely associated with bile acids has been well documented. However, how dynamic oral administration of uridine affects bile acid and cholesterol metabolism has not been studied. We conducted the present study to investigate effects of oral administration of uridine in the daytime and nighttime (D-UR and N-UR) on bile acid and cholesterol metabolism-related genes expression in liver and ileum of mice. The results showed that oral administration of uridine in the nighttime (N-UR) reduced serum CHOL and ALT levels at Zeitgeber time (ZT) 4, ZT22, respectively. Compared with D-UR group, the mRNA expression of FXR and SHP genes of liver decreased in N-UR group at ZT10, ZT16, respectively. In addition, oral administration of uridine in the nighttime rhythmically increased the mRNA expression of bile acid transport, cholesterol excretion and decreased the mRNA expression of cholesterol absorption in ileum. Moreover, the expression of nucleotide transport and synthesis genes were also explored in duodenum. Oral administration of uridine in the nighttime rhythmically up-regulated nucleotide transport and synthesis genes expression. In conclusion, these results indicated dynamic oral administration of uridine has effects on the rhythmic fluctuation of cholesterol, bile acid and nucleotide metabolism-related genes. These findings have important physiological and pathophysiological implications, since bile acid and cholesterol metabolism are essential for cell function and closely involved in the development of metabolic syndrome.  相似文献   

20.
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo‐ and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2′‐phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat/KM) of NADP+ at least an order of magnitude lower than NAD+. Substitution of Glu42 with Ala improved specificity toward NADP+ by 10‐fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide‐hydroxyl ion (NAD+‐OH?) adduct contraposing previously reported adducts. The OH? of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2′‐hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD+‐OH? adduct in proton relay instead of hydride transfer as noted for previous adducts. Proteins 2014; 82:216–229. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号