首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstructing the transmission history of infectious diseases in the absence of medical or epidemiological records often relies on the evolutionary analysis of pathogen genetic sequences. The precision of evolutionary estimates of epidemic history can be increased by the inclusion of sequences derived from ‘archived’ samples that are genetically distinct from contemporary strains. Historical sequences are especially valuable for viral pathogens that circulated for many years before being formally identified, including HIV and the hepatitis C virus (HCV). However, surprisingly few HCV isolates sampled before discovery of the virus in 1989 are currently available. Here, we report and analyse two HCV subgenomic sequences obtained from infected individuals in 1953, which represent the oldest genetic evidence of HCV infection. The pairwise genetic diversity between the two sequences indicates a substantial period of HCV transmission prior to the 1950s, and their inclusion in evolutionary analyses provides new estimates of the common ancestor of HCV in the USA. To explore and validate the evolutionary information provided by these sequences, we used a new phylogenetic molecular clock method to estimate the date of sampling of the archived strains, plus the dates of four more contemporary reference genomes. Despite the short fragments available, we conclude that the archived sequences are consistent with a proposed sampling date of 1953, although statistical uncertainty is large. Our cross-validation analyses suggest that the bias and low statistical power observed here likely arise from a combination of high evolutionary rate heterogeneity and an unstructured, star-like phylogeny. We expect that attempts to date other historical viruses under similar circumstances will meet similar problems.  相似文献   

2.
The phylogenetics of Sternbergia (Amaryllidaceae) were studied using DNA sequences of the plastid ndhF and matK genes and nuclear internal transcribed spacer (ITS) ribosomal region for 38, 37 and 32 ingroup and outgroup accessions, respectively. All members of Sternbergia were represented by at least one accession, except S. minoica and S. schubertii, with additional taxa from Narcissus and Pancratium serving as principal outgroups. Sternbergia was resolved and supported as sister to Narcissus and composed of two primary subclades: S. colchiciflora sister to S. vernalis, S. candida and S. clusiana, with this clade in turn sister to S. lutea and its allies in both Bayesian and bootstrap analyses. A clear relationship between the two vernal flowering members of the genus was recovered, supporting the hypothesis of a single origin of vernal flowering in Sternbergia. However, in the S. lutea complex, the DNA markers examined did not offer sufficient resolving power to separate taxa, providing some support for the idea that S. sicula and S. greuteriana are conspecific with S. lutea. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 149–162.  相似文献   

3.
Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree'' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.  相似文献   

4.
Abstract

This contribution reports the results of an electrophoretic analysis of four species of the molluscan genus Amalda. The results of this analysis confirm that four taxonomically defined species are also biologically distinct, that their often considerable morphological variability is a within-species phenomenon, and that a previously undescribed form of A. depressa, which is genetically and morphologically distinct, occurs in the Bay of Islands. The genetic data were analysed cladistically and the resulting phylogenetic classification supports that based on morphology.  相似文献   

5.
Bayesian phylogenetics has gained substantial popularity in the last decade, with most implementations relying on Markov chain Monte Carlo (MCMC). The computational demands of MCMC mean that remote servers are increasingly used. We present Beastiary, a package for real-time and remote inspection of log files generated by MCMC analyses. Beastiary is an easily deployed web-app that can be used to summarize and visualize the output of many popular software packages including BEAST, BEAST2, RevBayes, and MrBayes via a web browser. We describe the design and implementation of Beastiary and some typical use-cases, with a focus on real-time remote monitoring.  相似文献   

6.
7.
Many evolutionary relationships remain controversial despite whole-genome sequencing data. These controversies arise, in part, due to challenges associated with accurately modeling the complex phylogenetic signal coming from genomic regions experiencing distinct evolutionary forces. Here, we examine how different regions of the genome support or contradict well-established relationships among three mammal groups using millions of orthologous parsimony-informative biallelic sites (PIBS) distributed across primate, rodent, and Pecora genomes. We compared PIBS concordance percentages among locus types (e.g. coding sequences (CDS), introns, intergenic regions), and contrasted PIBS utility over evolutionary timescales. Sites derived from noncoding sequences provided more data and proportionally more concordant sites compared with those from CDS in all clades. CDS PIBS were also predominant drivers of tree incongruence in two cases of topological conflict. PIBS derived from most locus types provided surprisingly consistent support for splitting events spread across the timescales we examined, although we find evidence that CDS and intronic PIBS may, respectively and to a limited degree, inform disproportionately about older and younger splits. In this era of accessible wholegenome sequence data, these results:1) suggest benefits to more intentionally focusing on noncoding loci as robust data for tree inference and 2) reinforce the importance of accurate modeling, especially when using CDS data.  相似文献   

8.
Serine protease inhibitors (serpins) are found in all kingdoms of life and play essential roles in multiple physiological processes. Owing to the diversity of the superfamily, phylogenetic analysis is challenging and prokaryotic serpins have been speculated to have been acquired from Metazoa through horizontal gene transfer due to their unexpectedly high homology. Here, we have leveraged a structural alignment of diverse serpins to generate a comprehensive 6,000-sequence phylogeny that encompasses serpins from all kingdoms of life. We show that in addition to a central “hub” of highly conserved serpins, there has been extensive diversification of the superfamily into many novel functional clades. Our analysis indicates that the hub proteins are ancient and are similar because of convergent evolution, rather than the alternative hypothesis of horizontal gene transfer. This work clarifies longstanding questions in the evolution of serpins and provides new directions for research in the field of serpin biology.  相似文献   

9.
The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress.  相似文献   

10.
病原真菌生态学研究现状及方法   总被引:1,自引:0,他引:1  
通过形态学、生理生化学及分子生物学等方法鉴定由自然界分离的真菌菌种,构建系统发生树,了解菌种间亲缘关系,评估种间和种内的进化规律,了解真菌与其所处环境的相互关系,是真菌生态学的主要研究目的之一。本文就真菌与自然界和动物宿主的相互关系,环境中真菌的分离和鉴定方法及系统发生学研究及现状进行综述,以期了解致病真菌的生存环境、种类发生、感染途径等,达到尽早控制感染源、探讨致病性及防治疾病传播的目的。  相似文献   

11.
A growing number of studies support a tendency toward preferential host switching, by parasites and pathogens, over relatively short phylogenetic distances. This suggests that a host switch is more probable if a potential host is closely related to the original host than if it is a more distant relative. However, despite its importance for the health of humans, livestock, and wildlife, the detailed dynamics of preferential host switching have, so far, been little studied. We present an empirical test of two theoretical models of preferential host switching, using observed phylogenetic distributions of host species for RNA viruses of three mammal orders (primates, carnivores, and ungulates). The analysis focuses on multihost RNA virus species, because their presence on multiple hosts and their estimated ages of origin indicate recent host switching. Approximate Bayesian computation was used to compare observed phylogenetic distances between hosts with those simulated under the theoretical models. The results support a decreasing sigmoidal model of preferential host switching, with a strong effect from increasing phylogenetic distance, on all three studied host phylogenies. This suggests that the dynamics of host switching are fundamentally similar for RNA viruses of different mammal orders and, potentially, a wider range of coevolutionary systems.  相似文献   

12.
The spider genus Metabus (Tetragnathidae) previously included nine species: the type M. gravidus O. P.-Cambridge, 1899 – junior synonym of Leucauge ocellata (Keyserling) – from Central America and eight species from Chile. In this paper, the classification of the Metabus species-complex is revised, and two new genera, with three new species and five new combinations, are described. Allende gen. nov. is created for four Chilean species not congeneric with the type of Metabus : the type A. puyehuensis sp. nov. , A. patagiatus (Simon) comb. nov. , A. nigrohumeralis (F. O. P.-Cambridge) comb. nov. and A. longipes (Nicolet) comb. nov. Further additions to the Chilean fauna are under the new genus Mollemeta gen. nov. – created for M. edwardsi (Simon) comb. nov. – and three new species of Chrysometa : C. acinosa sp. nov. , C. levii sp. nov. and C. maitae sp. nov. Metabus now includes four species: M. ocellatus (Keyserling) comb. nov. , M. debilis (O. P.-Cambridge) comb. nov. , M. ebanoverde sp. nov. and M. conacyt sp. nov. All of these species were included in a phylogenetic analysis of 38 tetragnathid and 12 orbicularian outgroup terminals scored for 105 morphological and behavioural characters. The results suggest that Metabus as previously circumscribed is polyphyletic. The phylogenetic relationships within tetragnathids are briefly discussed. © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 151 , 285–335.  相似文献   

13.
Tribe Merremieae, as currently circumscribed, comprise c. 120 species classified in seven genera, the largest of which (Merremia) is morphologically heterogeneous. Previous studies, with limited sampling, have suggested that neither Merremieae nor Merremia are monophyletic. In the present study, the monophyly of Merremia and its allied genera was re‐assessed, sampling 57 species of Merremieae for the plastid matK, trnL–trnF and rps16 regions and the nuclear internal transcribed spacer (ITS) region. All genera of Merremieae and all major morphotypes in Merremia were represented. Phylogenetic analyses resolve Merremieae in a clade with Ipomoeae, Convolvuleae and Daustinia montana. Merremia is confirmed as polyphyletic and a number of well‐supported and morphologically distinct clades in Merremieae are recognized which accommodate most of the species in the tribe. These provide a framework for a generic revision of the assemblage. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015.  相似文献   

14.
Despite their role in marine systems, Sergestidae remain one of the most poorly understood families amongst planktonic shrimps with regard to phylogeny. Recent morphological and phylogenetic revisions of a number of sergestid genera have disentangled classificatory problems and emphasized the importance of reproductive structures for the taxonomy and phylogeny of the Sergestidae. Only three genera, Acetes, Peisos, and Sicyonella, remain unrevised phylogenetically. We undertook a phylogenetic analysis of these groups based on 124 morphological characters (120 binary, four multistate). Eighteen new characters were based on scanning electron microscopy studies of the clasping organ and petasma. The phylogenetic analysis revealed statistically supported monophyly of the clades Sicyonella and Acetes + Peisos. We combine Peisos and Acetes into a monophyletic genus Acetes, give emended diagnoses and keys to all species of Sicyonella and Acetes, and discuss morphological trends within these genera. We present maps of geographical distribution for all valid species of Acetes. © 2015 The Linnean Society of London  相似文献   

15.
本研究对2018至2021年采集的9号巢鼠(Micromys minutus)标本、22号红耳巢鼠(M. erythrotis)标本和19号待厘定的巢鼠属标本,进行形态分类和分子系统学分析,进一步揭示我国巢鼠属的分类和系统分化问题。待厘定的巢鼠属标本形态特征为:标本体背毛黑棕,体腹毛基灰色,毛尖灰白,体侧毛色具明显区分,尾背部毛色黑棕,尾腹部毛色灰棕色;尾长长于头体长的120%;头骨背面观可见颧弓明显弯曲;颅全长[(18.59 ± 0.48)mm]和颅基长[(17.43 ± 0.48 mm)]较长,腭长[(9.35 ± 0.11)mm]较长,脑颅高[(7.43 ± 0.06)mm]较高。待厘定的巢鼠属标本形态特征与巢鼠和红耳巢鼠均存在差异。待厘定巢鼠属标本与巢鼠和红耳巢鼠之间的遗传距离分别为0.115和0.136,接近于巢鼠与红耳巢鼠之间的遗传距离(0.126)。利用Cyt b基因全序列和核基因IRBP1、RAG1和RAG2序列分别构建的巢鼠属系统发生树均以较高的置信度分化成3个进化支,即巢鼠、红耳巢鼠和待厘定的巢鼠属样本的进化支。形态学和分子系统学分析结果均支持待厘定的巢鼠属标本为独立物种分类单元,对应于文献记载的巢鼠川西亚种(M. m. pygmaeus)。根据产地、遗传距离和形态分化,建议将巢鼠川西亚种提升为种,命名为川西巢鼠(M. pygmaeus comb. nov.)。利用Cyt b基因全序列构建的巢鼠系统发生树分化成6个进化谱系:日韩谱系、欧洲谱系、俄罗斯新西伯利亚谱系、中国东北和俄罗斯远东谱系、中国安徽谱系和中国台湾谱系。  相似文献   

16.
The identification of gut diverticula at 7/8 as a synapomorphy and recognition of all taxa of Guaranidrilus has been obscured by losses of gut diverticula within the lineage. The homoplastic occurrence of basally unpaired peptonephridia in some enchytraeid species has similarly obscured the limits of Hemienchytraeus. Taxa with unpredictable relationships, morphogenic irregularities in some reproductive structures, and, apparently, modified modes of reproduction, suggest the possibilities of hybridization between taxa with both close and distant relationships.  相似文献   

17.
Although hybridization in plants has been recognized as an important pathway in plant speciation, it may also affect the ecology and evolution of associated communities. Cottonwood species (Populus angustifolia and P. fremontii) and their naturally occurring hybrids are known to support different plant, animal, and microbial communities, but no studies have examined community structure within the context of phylogenetic history. Using a community composed of 199 arthropod species, we tested for differences in arthropod phylogenetic patterns within and among hybrid and parental tree types in a common garden. Three major patterns emerged. (1) Phylogenetic diversity (PD) was significantly different between arthropod communities on hybrids and Fremont cottonwood when pooled by tree type. (2) Mean phylogenetic distance (MPD) and net relatedness index (NRI) indicated that communities on hybrid trees were significantly more phylogenetically overdispersed than communities on either parental tree type. (3) Community distance (Dpw) indicated that communities on hybrids were significantly different than parental species. Our results show that arthropod communities on parental and hybrid cottonwoods exhibit significantly different patterns of phylogenetic structure. This suggests that arthropod community assembly is driven, in part, by plant–arthropod interactions at the level of cottonwood tree type. We discuss potential hypotheses to explain the effect of plant genetic dissimilarity on arthropod phylogenetic community structure, including the role of competition and environmental filtering. Our findings suggest that cottonwood species and their hybrids function as evolutionarily significant units (ESUs) that affect the assembly and composition of associated arthropod communities and deserve high priority for conservation.  相似文献   

18.
Examinations of breeding system transitions have primarily concentrated on the transition from hermaphroditism to dioecy, likely because of the preponderance of this transition within flowering plants. Fewer studies have considered the reverse transition: dioecy to hermaphroditism. A fruitful approach to studying this latter transition can be sought by studying clades in which transitions between dioecy and hermaphroditism have occurred multiple times. Freshwater crustaceans in the family Limnadiidae comprise dioecious, hermaphroditic and androdioecious (males + hermaphrodites) species, and thus this family represents an excellent model system for the assessment of the evolutionary transitions between these related breeding systems. Herein we report a phylogenetic assessment of breeding system transitions within the family using a total evidence comparative approach. We find that dioecy is the ancestral breeding system for the Limnadiidae and that a minimum of two independent transitions from dioecy to hermaphroditism occurred within this family, leading to (1) a Holarctic, all‐hermaphrodite species, Limnadia lenticularis and (2) mixtures of hermaphrodites and males in the genus Eulimnadia. Both hermaphroditic derivatives are essentially females with only a small amount of energy allocated to male function. Within Eulimnadia, we find several all‐hermaphrodite populations/species that have been independently derived at least twice from androdioecious progenitors within this genus. We discuss two adaptive (based on the notion of ‘reproductive assurance’) and one nonadaptive explanations for the derivation of all‐hermaphroditism from androdioecy. We propose that L. lenticularis likely represents an all‐hermaphrodite species that was derived from an androdioecious ancestor, much like the all‐hermaphrodite populations derived from androdioecy currently observed within the Eulimnadia. Finally, we note that the proposed hypotheses for the dioecy to hermaphroditism transition are unable to explain the derivation of a fully functional, outcrossing hermaphroditic species from a dioecious progenitor.  相似文献   

19.
The mitochondrial genome (mtGenome) has been little studied in the turkey ( Meleagris gallopavo ), a species for which there is no publicly available mtGenome sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. The entire sequence (16 717 bp) of the turkey mtGenome was obtained, and it exhibited 85% similarity to the chicken mtGenome sequence. Thirteen genes and 24 RNAs (22 tRNAs and 2 rRNAs) were annotated. An mtGenome-based phylogenetic analysis indicated that the turkey is most closely related to the chicken, Gallus gallus , and quail, Corturnix japonica . Given the importance of the mtGenome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economically significant traits in the turkey.  相似文献   

20.
Recent and ancient asexuality in Timema walkingsticks   总被引:1,自引:0,他引:1  
Determining the evolutionary age of asexual lineages should help in inferring the temporal scale under which asexuality and sex evolve and assessing selective factors involved in the evolution of asexuality. We used 416 bp of the mitochondrial COI gene to infer phylogenetic relationships of virtually all known Timema walkingstick species, including extensive intraspecific sampling for all five of the asexuals and their close sexual relatives. The asexuals T. douglasi and T. shepardii were very closely related to each other and evolutionarily young (less than 0.5 million years old). For the asexuals T. monikensis and T. tahoe, evidence for antiquity was weak since only one population of each was sampled, intraspecific divergences were low, and genetic distances to related sexuals were high: maximum-likelihood molecular-clock age estimates ranged from 0.26 to 2.39 million years in T. monikensis and from 0.29-1.06 million years in T. tahoe. By contrast, T. genevieve was inferred to be an ancient asexual, with an age of 0.81 to 1.42 million years. The main correlate of the age of asexual lineages was their geographic position, with younger asexuals being found further north.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号