首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Inflammatory stimuli induce the hepatic iron regulatory hormone hepcidin, which contributes to anaemia of inflammation (AI). Hepcidin expression is regulated by the bone morphogenetic protein (BMP) and the interleukin-6 (IL-6) signalling pathways. Prior results indicate that the BMP type I receptor ALK3 is mainly involved in the acute inflammatory hepcidin induction four and 72 h after IL-6 administration. In this study, the role of ALK3 in a chronic model of inflammation was investigated. The intact, heat-killed bacterium Brucella abortus (BA) was used to analyse its effect on the development of inflammation and hypoferremia in mice with hepatocyte-specific Alk3-deficiency (Alk3fl/fl; Alb-Cre) compared to control (Alk3fl/fl) mice.

Results

An iron restricted diet prevented development of the iron overload phenotype in mice with hepatocyte-specific Alk3 deficiency. Regular diet leads to iron overload and increased haemoglobin levels in these mice, which protects from the development of AI per se. Fourteen days after BA injection Alk3fl/fl; Alb-Cre mice presented milder anaemia (Hb 16.7 g/dl to 11.6 g/dl) compared to Alk3fl/fl control mice (Hb 14.9 g/dl to 8.6 g/dl). BA injection led to an intact inflammatory response in all groups of mice. In Alk3fl/fl; Alb-Cre mice, SMAD1/5/8 phosphorylation was reduced after BA as well as after infection with Staphylococcus aureus. The reduction of the SMAD1/5/8 signalling pathway due to hepatocyte-specific Alk3 deficiency partly suppressed the induction of STAT3 signalling.

Conclusion

The results reveal in vivo, that 1) hepatocyte-specific Alk3 deficiency partly protects from AI, 2) the development of hypoferremia is partly dependent on ALK3, and 3) the ALK3/BMP/hepcidin axis may serve as a possible therapeutic target to attenuate AI.
  相似文献   

2.
3.
Hepcidin-synthesis was reported to be stimulated by inflammation. In contrast, hepcidin synthesis was inhibited by TNFα and serum hepcidin was low. To elucidate these contradictions, we compare data on hepcidin expression, on iron absorption and homoeostasis and markers of inflammation between two murine models of intestinal inflammation and corresponding wild-types as determined by standard methods.In TNFΔARE/+ and IL-10−/−-mice hepatic hepcidin expression and protein content was significantly lower than in corresponding wild-types. However, 59Fe whole-body retention showed no difference between knock-outs and corresponding wild-types 7d after gavage, in neither strain. Compared to wild-types, body weight, hepatic non-haem iron content, hemoglobin and hematocrit were significantly decreased in TNFΔARE/+ mice, while erythropoiesis increased. These differences were not seen in IL-10−/− mice. Duodenal IL-6 and TNFα content increased significantly in TNFΔARE/+ mice, while ferritin-H decreased along with hepatic hepcidin expression, ferritin L, and non-haem iron. In IL-10−/− mice, these changes were less marked or missing for non-haem iron. Duodenal ferritin-L and ferroportin increased significantly, while HFE decreased.Our results corroborate the conflicting combination of low hepcidin with inflammation and without increased intestinal iron absorption. Speculating on underlying mechanism, decreased hepcidin may result from stimulated erythropoiesis. Unaltered intestinal iron-absorption may compromise between the stimulation by increased erythropoiesis and inhibition by local and systemic inflammation. The findings suggest intense interaction between counterproductive mechanisms and ask for further research.  相似文献   

4.
5.
Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe−/−) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe−/− mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe−/− mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe−/− retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.  相似文献   

6.

Background

Previous work has established that HGF/c-Met signaling plays a pivotal role in regulating the onset of S phase following partial hepatectomy (PH). In this study, we used Metfl/fl;Alb-Cre+/− conditional knockout mice to determine the effects of c-Met dysfunction in hepatocytes on kinetics of liver regeneration.

Methodology/Principal Finding

The priming events appeared to be intact in Metfl/fl;Alb-Cre+/− livers. Up-regulation of stress response (MAFK, IKBZ, SOCS3) and early growth response (c-Myc, c-Jun, c-Fos, DUSP1 and 6) genes as assessed by RT-qPCR and/or microarray profiling was unchanged. This was consistent with an early induction of MAPK/Erk and STAT3. However, after a successful completion of the first round of DNA replication, c-Met deficient hepatocytes were blocked in early/mid G2 phase as shown by staining with phosphorylated form of histone H3. Furthermore, loss of c-Met in hepatocytes diminished the subsequent G1/S progression and delayed liver recovery after partial hepatectomy. Upstream signaling pathways involved in the blockage of G2/M transition included lack of persistent Erk1/2 activation and inability to up-regulate the levels of Cdk1, Plk1, Aurora A and B, and Mad2 along with a defective histone 3 phosphorylation and lack of chromatin condensation. Continuous supplementation with EGF in vitro increased proliferation of Metfl/fl;Alb-Cre+/− primary hepatocytes and partially restored expression levels of mitotic cell cycle regulators albeit to a lesser degree as compared to control cultures.

Conclusion/Significance

In conclusion, our results assign a novel non-redundant function for HGF/c-Met signaling in regulation of G2/M gene expression program via maintaining a persistent Erk1/2 activation throughout liver regeneration.  相似文献   

7.

Rationale

During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients.

Methods

We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepRfl/fl) or macrophages and alveolar type II cells (LysM-Cre/Leprfl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity.

Results

The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl /fl mice exhibited improved survival.

Conclusions

Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.  相似文献   

8.
Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.  相似文献   

9.
Type 2 CXC chemokine receptor CXCR2 plays roles in development, tumorigenesis, and inflammation. CXCR2 also promotes demyelination and decreases remyelination by actions toward hematopoietic cells and nonhematopoietic cells. Germline CXCR2 deficient (Cxcr2‐/‐) mice reported in 1994 revealed the complexity of CXCR2 function and its differential expression in varied cell‐types. Here, we describe Cxcr2fl/fl mice for which the targeting construct was generated by recombineering based on homologous recombination in E. coli. Without recombination Cxcr2fl/fl mice have CXCR2 expression on neutrophils in peripheral blood, bone marrow and spleen. Cxcr2fl/fl mice were crossed to Mx‐Cre mice in which Cre recombinase is induced by Type I interferons, elicited by injection with polyinosinic‐polycytidylic acid (poly(I:C)). CXCR2‐deficient neutrophils were observed in poly(I:C) treated Cxcr2fl/fl::Mx‐Cre+ (Cxcr2‐CKO) mice, but not in poly(I:C) treated Cxcr2f//+::Mx‐Cre+ mice. CXCR2 deletion was mainly observed peripherally but not in the CNS. Cxcr2‐CKO mice showed impaired neutrophil migration in sterile peritonitis. Cxcr2‐CKO mice reported here will provide a genetic reagent to dissect roles of CXCR2 in the neutrophil granulocyte lineage. Furthermore Cxcr2fl/fl mice will provide useful genetic models to evaluate CXCR2 function in varied cell populations. genesis 51:587–595. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
11.
The inhibitory Smad7 acts as a critical suppressor of hepcidin, the major regulator of systemic iron homeostasis. In this study we define the mRNA expression of the two functionally related Smad proteins, Smad6 and Smad7, within pathways known to regulate hepcidin levels. Using mouse models for hereditary hemochromatosis (Hfe-, TfR2-, Hfe/TfR2-, Hjv- and hepcidin1-deficient mice) we show that hepcidin, Smad6 and Smad7 mRNA expression is coordinated in such a way that it correlates with the activity of the Bmp/Smad signaling pathway rather than with liver iron levels. This regulatory circuitry is disconnected by iron treatment of Hfe ?/? and Hfe/TfR2 mice that significantly increases hepatic iron levels as well as hepcidin, Smad6 and Smad7 mRNA expression but fails to augment pSmad1/5/8 levels. This suggests that additional pathways contribute to the regulation of hepcidin, Smad6 and Smad7 under these conditions which do not require Hfe.  相似文献   

12.
Podocytopathy and associated nephrotic syndrome (NS) have been reported in a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy of these mice remains unknown. The present study tested whether exosome release from podocytes is enhanced due to Asah1 gene knockout, which may serve as a pathogenic mechanism switching on podocytopathy and associated NS in Asah1fl/fl/PodoCre mice. We first demonstrated the remarkable elevation of urinary exosome excretion in Asah1fl/fl/PodoCre mice compared with WT/WT mice, which was accompanied by significant Annexin-II (an exosome marker) accumulation in glomeruli of Asah1fl/fl/PodoCre mice, as detected by immunohistochemistry. In cell studies, we also confirmed that Asah1 gene knockout enhanced exosome release in the primary cultures of podocyte isolated from Asah1fl/fl/PodoCre mice compared to WT/WT mice. In the podocytes from Asah1fl/fl/PodoCre mice, the interactions of lysosome and multivesicular body (MVB) were demonstrated to be decreased in comparison with those from their control littermates, suggesting reduced MVB degradation that may lead to increase in exosome release. Given the critical role of transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited in the podocytes of Asah1fl/fl/PodoCre mice. By GCaMP3 Ca2+ imaging, it was found that lysosomal Ca2+ release through TRPML1 channels was substantially suppressed in podocytes with Asah1 gene deletion. As an Ac product, sphingosine was found to rescue TRPML1 channel activity and thereby recover lysosome-MVB interaction and reduce exosome release of podocytes from Asah1fl/fl/PodoCre mice. Combination of N, N-dimethylsphingosine (DMS), a potent sphingosine kinase inhibitor, and sphingosine significantly inhibited urinary exosome excretion of Asah1fl/fl/PodoCre mice. Moreover, rescue of Aash1 gene expression in podocytes of Asah1fl/fl/PodoCre mice showed normal ceramide metabolism and exosome secretion. Based on these results, we conclude that the normal expression of Ac importantly contributes to the control of TRPML1 channel activity, lysosome-MVB interaction, and consequent exosome release from podocytes. Asah1 gene defect inhibits TRPML1 channel activity and thereby enhances exosome release, which may contribute to the development of podocytopathy and associated NS.  相似文献   

13.
Endothelial progenitor cells (EPCs) contribute to neovascularization and vascular repair, and may exert a beneficial effect on the clinical outcome of sepsis. Osteoblasts act as a component of “niche” in bone marrow, which provides a nest for stem/progenitor cells and are involved in the formation and maintenance of stem/progenitor cells. Fibroblast growth factor receptor 1 (FGFR1) can regulate osteoblast activity and influence bone mass. So we explored the role of FGFR1 in EPC mobilization. Male mice with osteoblast-specific knockout of Fgfr1 (Fgfr1fl/fl;OC-Cre) and its wild-type littermates (Fgfr1fl/fl) were used in this study. Mice intraperitoneally injected with lipopolysaccharide (LPS) were used to measure the number of circulating EPCs in peripheral blood and serum stromal cell-derived factor 1α (SDF-1α). The circulating EPC number and the serum level of SDF-1α were significantly higher in Fgfr1fl/fl;OC-Cre mice than those in Fgfr1fl/fl mice after LPS injection. In cell culture system, SDF-1α level was also significantly higher in Fgfr1fl/fl;OC-Cre osteoblasts compared with that in Fgfr1fl/fl osteoblasts after LPS treatment. TRAP staining showed that there was no significant difference between the osteoclast activity of septic Fgfr1fl/fland Fgfr1fl/fl;OC-Cre mice. This study suggests that targeted deletion of Fgfr1 in osteoblasts enhances mobilization of EPCs into peripheral blood through up-regulating SDF-1α secretion from osteoblasts.  相似文献   

14.
Transforming growth factor-β (TGF-β) signaling is crucial for mandible development. During its development, the majority of the mandible is formed through intramembranous ossification whereas the proximal region of the mandible undergoes endochondral ossification. Our previous work has shown that TGF-β signaling is required for the proliferation of cranial neural crest (CNC)-derived ectomesenchyme in the mandibular primordium where intramembranous ossification takes place. Here we show that conditional inactivation of Tgfbr2 in CNC cells results in accelerated osteoprogenitor differentiation and perturbed chondrogenesis in the proximal region of the mandible. Specifically, the appearance of chondrocytes in Tgfbr2fl/fl;Wnt1-Cre mice is delayed and they are smaller in size in the condylar process and completely missing in the angular process. TGF-β signaling controls Sox9 expression in the proximal region, because Sox9 expression is delayed in condylar processes and missing in angular process in Tgfbr2fl/fl;Wnt1-Cre mice. Moreover, exogenous TGF-β can induce Sox9 expression in the mandibular arch. In the angular processes of Tgfbr2fl/fl;Wnt1-Cre mice, osteoblast differentiation is accelerated and Dlx5 expression is elevated. Significantly, deletion of Dlx5 in Tgfbr2fl/fl;Wnt1-Cre mice results in the rescue of cartilage formation in the angular processes. Finally, TGF-β signaling-mediated Scleraxis expression is required for tendonogenesis in the developing skeletal muscle. Thus, CNC-derived cells in the proximal region of mandible have a cell intrinsic requirement for TGF-β signaling.  相似文献   

15.
Both hemojuvelin (HJV) and bone morphogenic protein-6 (BMP6) are essential for hepcidin expression. Hepcidin is the key peptide hormone in iron homeostasis, and is secreted predominantly by hepatocytes. HJV expression is detected in hepatocytes, as well as in skeletal and heart muscle. HJV binds BMP6 and increases hepcidin expression presumably by acting as a BMP co-receptor. We characterized the role of hepatocyte HJV in the regulation of BMP6 and hepcidin expression. In HJV-null (Hjv−/−) mice that have severe iron overload and marked suppression of hepcidin expression, we detected 4-fold higher hepatic BMP6 mRNA than in wild-type counterparts. These results indicate that Hjv−/− mice do not lack BMP6. Furthermore, iron depletion in Hjv−/− mice decreased hepatic BMP6 mRNA. Expression of HJV in hepatocytes of Hjv−/− mice using an AAV2/8 vector, increased hepatic hepcidin mRNA by 65-fold and phosphorylated Smad1/5/8 in the liver by about 2.5-fold. However, no significant change in BMP6 mRNA was detected in either the liver or the small intestine of these animals. Our results revealed a close correlation of hepatic BMP6 mRNA expression with hepatic iron-loading. Together, our data indicate that the regulation of hepatic BMP6 expression by iron is independent of HJV, and that expression of HJV in hepatocytes plays an essential role in hepcidin expression by potentiating the BMP6-mediated signaling.  相似文献   

16.
17.
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP‐Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte‐specific Smad7 knockout mice (Smad7Alb/Alb), which showed decreased serum iron, tissue iron, haemoglobin concentration, up‐regulated hepcidin and increased phosphor‐Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor‐Smad1/5/8 levels between iron‐challenged Smad7Alb/Alb and Smad7flox/flox, suggesting other factors assume the role of iron‐induced hepcidin regulation in Smad7 deletion. We performed RNA‐seq to identify differentially expressed genes in the liver. Significantly up‐regulated genes were then mapped to pathways, revealing TGF‐β signalling as one of the most relevant pathways, including the up‐regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi—but not Follistatin—are controlled by the iron‐BMP–Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non‐redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.  相似文献   

18.
目的:研究PDK1对生发中心(GC)的生成、发育及其功能的影响。方法:通过配种小鼠得到在GC B细胞中特异性敲除PDK1的小鼠,然后采用共聚焦显微镜观察小鼠脾脏GC的大小,多色流式细胞分析方法观测PDK1的敲除是否会影响小鼠B细胞的发育,ELISA技术检测PDK1敲除的小鼠经免疫后其体内产生抗体的能力是否受影响,结合平面脂双层抗原呈递系统及全内反射荧光显微镜成像系统(TIRFM)观测PDK1的敲除是否会影响小鼠脾脏IgG细胞P85的磷酸化水平。结果:PDK1的缺失并不会影响小鼠B细胞的发育,细胞群中成熟与不成熟B细胞所占比例均无显著性变化,但在GC B细胞中条件性敲除PDK1会影响小鼠脾脏GC的生成以及T细胞依赖性抗原免疫反应,而且同等条件活化后,GC B细胞中条件性敲除PDK1的小鼠脾脏IgG细胞其胞内分子P85的磷酸化水平显著降低。结论:PDK1对GC的生成、发育及功能都具有重要作用。  相似文献   

19.
20.
Basigin is a highly glycosylated transmembrane protein that is expressed in a broad range of tissues and is involved in a number of physiological and pathological processes. However, the in vivo role of basigin remains unknown. To better understand the physiological and pathological functions of basigin in vivo, we generated a conditional null allele by introducing two loxP sites flanking exons 2 and 7 of the basigin gene (Bsg). Bsgfl/fl mice were born at the expected Mendelian ratio and showed a similar growth rate compared with wildtype mice. After crossing these mice with Lck-Cre transgenic mice, basigin expression was specifically inactivated in T cells in the resulting Lck-Cre; Bsgfl/fl mice. Although the birth and growth rate of Lck-Cre; Bsgfl/fl mice were similar to control mice, thymus development was partially arrested in Lck-Cre; Bsgfl/fl mice, specifically at the CD4+CD8+ double-positive (DP) and CD4 single-positive (CD4+CD8-, CD4SP) stages. In addition, CD4+ T cell activation was enhanced upon Concanavalin A (Con A) or anti-CD3/anti-CD28 stimulation but not upon PMA/Ionomycin stimulation in the absence of basigin. Overall, this study provided the first in vivo evidence for the function of basigin in thymus development. Moreover, the successful generation of the conditional null basigin allele provides a useful tool for the study of distinct physiological or pathological functions of basigin in different tissues at different development stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号