共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell suspensions from porcine olfactory mucosa. Changes in membrane potential and membrane fluidity in response to various odorants 总被引:1,自引:0,他引:1 下载免费PDF全文
A suspension of olfactory epithelial cells was prepared from porcine olfactory mucosa and the physiological functions of the suspension were examined. The membrane potential of the cell suspension, which was monitored by measuring the fluorescence changes of rhodamine 6G, was depolarized by an increase in the K+ concentration in the external medium. Various odorants depolarized the cell suspension in a dose-dependent fashion. The magnitude of depolarization by odorants was either unchanged or slightly increased by a reduction of the concentration of Na+, Ca2+, and Cl- in the external medium, which suggests that changes in the permeabilities of specific ions are not involved in depolarization by odorants. The application of various odorants to the cell suspension induced changes in the membrane fluidity at different sites of the membrane that were monitored with various fluorescent dyes [8-anilino-1-naphthalene sulfonate, n-(9-anthroyloxy) stearic acids, 12-(9-anthroyloxy) oleic acid, and (1,6-diphenyl-1,3,5-hexatriene)], which suggests that the odorants having different odors are adsorbed on different sites in the membrane. On the basis of these results, a possible mechanism of odor discrimination is discussed. 相似文献
2.
In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system. 相似文献
3.
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli. 相似文献
4.
Human olfactory receptor families and their odorants 总被引:1,自引:0,他引:1
Krautwurst D 《化学与生物多样性》2008,5(6):842-852
The human nose detects volatile chemical stimuli by at least three different receptor families: odorant receptors, trace amine-associated receptors, and vomeronasal type-1 receptors. As G protein-coupled receptors, all of the few functionally characterized olfactory receptors share major functional features: when expressed in heterologous cell systems, they 1) respond to odorants of certain chemical groups, e.g., amines, aliphatic carboxylic acids or aldehydes, floral or fruity odorants, including certain key-food odorants, and putative pheromones, and 2) transduce their signals to intracellular cAMP signaling. However, little is known yet about specific differences in the functional designation of the three olfactory receptor families. Recently, two heterologous cell systems expressing olfactory signaling molecules have been developed. Different screening strategies will shed light on the yet sparsely available odorant specificity profiles and structure-function relationships of olfactory receptors, as well as the structure-activity relationships of their odorants. 相似文献
5.
M Kashiwayanagi M Horiuchi K Kurihara 《Comparative biochemistry and physiology. A, Comparative physiology》1991,100(2):287-292
1. Dependence of the fron olfactory bulbar responses on NaCl concentration greatly varied from odorant to odorant. The responses to odorants such as 1-carvone and isoamyl acetate were essentially unchanged by removal of NaCl, while those to odorant such as citral and beta-ionone were greatly decreased by removal of NaCl. 2. The NaCl requirement for the responses to certain odorants was greatly decreased by an increase in pH or temperature of the stimulating solution. 3. It was concluded that changes in ion permeability at the apical membranes of olfactory cells including olfactory ciliary membranes are not involved in generation of the in vivo olfactory responses to certain odorants. 相似文献
6.
Evaluation of long-term occupational exposure to styrene vapor on olfactory function 总被引:1,自引:0,他引:1
Dalton P Lees PS Gould M Dilks D Stefaniak A Bader M Ihrig A Triebig G 《Chemical senses》2007,32(8):739-747
The primary sensory neurons of the olfactory system are chronically exposed to the ambient environment and may therefore be susceptible to damage from occupational exposure to many volatile chemicals. To investigate whether occupational exposure to styrene was associated with olfactory impairment, we examined olfactory function in 2 groups: workers in a German reinforced-plastics boat-manufacturing facility having a minimum of 2 years of styrene exposure (15-25 ppm as calculated from urinary metabolite concentrations, with historical exposures up to 85 ppm) and a group of age-matched workers from the same facility with lower styrene exposures. The results were also compared with normative data previously collected from healthy, unexposed individuals. Multiple measures of olfactory function were evaluated using a standardized battery of clinical assessments from the Monell-Jefferson Chemosensory Clinical Research Center that included tests of threshold sensitivity for phenylethyl alcohol (PEA) and odor identification ability. Thresholds for styrene were also obtained as a measure of occupational olfactory adaptation. Styrene exposure history was calculated through the use of past biological monitoring results for urinary metabolites of styrene (mandelic acid [MA], phenylglyoxylic acid [PGA]); current exposure was determined for each individual using passive air sampling for styrene and biological monitoring for styrene urinary metabolites. Current mean effective styrene exposure during the day of olfactory testing for the group of workers who worked directly with styrene resins was 18 ppm styrene (standard deviation [SD] = 14), 371 g/g creatinine MA + PGA (SD = 289) and that of the group of workers with lower exposures was 4.8 ppm (SD = 5.2), 93 g/g creatinine MA+PGA (SD = 100). Historic annual average exposures for all workers were greater by a factor of up to 6x. No differences unequivocally attributable to exposure status were observed between the Exposed and Comparison groups or between performance of either group and normative population values on thresholds for PEA or odor identification. Although odor identification performance was lower among workers with higher ongoing exposures, performance on this test is not a pure measure of olfactory ability and is influenced by familiarity with the stimuli and their sources. Consistent with exposure-induced sensory adaptation, however, elevated styrene thresholds were significantly associated with higher occupational exposures to styrene. In summary, the present study found no evidence among a cross-section of reinforced-plastics workers that current or historical exposure to styrene was associated with a general impairment of olfactory function. When taken together with prior studies of styrene-exposed workers, these results suggest that styrene is not a significant olfactory toxicant in humans at current exposure levels. 相似文献
7.
R. P. Akers W. M. Getz 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(2):169-185
Recordings were made from single sensilla placodea of the worker honeybee (Apis mellifera). The sensilla were stimulated with one of two sets of four compounds and their binary mixtures, at two dosage levels. Aromatic compounds comprised one set, and saturated n-octane derivatives comprised the other set. Correlation, principal component, and cluster analyses indicate that responses to binary mixtures are not linear combinations of responses to the component compounds. The first principal component indicated that neuronal units had either more excitatory or more inhibitory responses to all odorants than would be expected from a model where inhibitory and excitatory responses are randomly distributed among the neuronal units. When compared to the responses to the component odorants, synergistic responses to binary odors occurred more often than would be expected by chance. Clear inhibitory responses to binary odors were less prevalent. This study agrees with an earlier study employing aromatic odorants in that most of the aromatic odorants each had groups of receptor neurons that were relatively selective for it, and each odorant had a distinctly different number of receptor neurons selective for it. Among the octane derivatives, receptor neurons were selective for the level of oxidation of the functional group or its site of attachment, rather than specific compounds. 相似文献
8.
B. Pophof 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2002,188(8):659-662
Effects of octopamine on responses of olfactory receptor neurons of Bombyx mori males and females, specialized to the reception of pheromone components and general odorants, respectively, were compared. Injections of octopamine had no effect on the transepithelial potential of antennal sensilla trichodea in both sexes. In males, octopamine increased significantly the amplitude of receptor potentials and nerve impulse responses elicited by the pheromone components bombykol and bombykal. However, the responses of homologous female general odorant-sensitive neurons to linalool and benzoic acid were not affected. In control experiments, injection of physiological saline did not increase the responses in any neuron type. 相似文献
9.
Guillaume Launay Guenha?l Sanz Edith Pajot-Augy Jean-Fran?ois Gibrat 《Biophysical reviews》2012,4(3):255-269
Olfactory receptors (ORs) belong to the superfamily of G protein-coupled receptors (GPCRs), the second largest class of genes after those related to immunity, and account for about 3 % of mammalian genomes. ORs are present in all multicellular organisms and represent more than half the GPCRs in mammalian species (e.g., the mouse OR repertoire contains >1,000 functional genes). ORs are mainly expressed in the olfactory epithelium where they detect odorant molecules, but they are also expressed in a number of other cells, such as sperm cells, although their functions in these cells remain mostly unknown. It has recently been reported that ORs are present in tumoral tissues where they are expressed at different levels than in healthy tissues. A specific OR is over-expressed in prostate cancer cells, and activation of this OR has been shown to inhibit the proliferation of these cells. Odorant stimulation of some of these receptors results in inhibition of cell proliferation. Even though their biological role has not yet been elucidated, these receptors might constitute new targets for diagnosis and therapeutics. It is important to understand the activation mechanism of these receptors at the molecular level, in particular to be able to predict which ligands are likely to activate a particular receptor (‘deorphanization’) or to design antagonists for a given receptor. In this review, we describe the in silico methodologies used to model the three-dimensional (3D) structure of ORs (in the more general framework of GPCR modeling) and to dock ligands into these 3D structures. 相似文献
10.
To visualize odorant representations by receptor neuron input to the mouse olfactory bulb, we loaded receptor neurons with calcium-sensitive dye and imaged odorant-evoked responses from their axon terminals. Fluorescence increases reflected activation of receptor neuron populations converging onto individual glomeruli. We report several findings. First, five glomeruli were identifiable across animals based on their location and odorant responsiveness; all five showed complex response specificities. Second, maps of input were chemotopically organized at near-threshold concentrations but, at moderate concentrations, involved many widely distributed glomeruli. Third, the dynamic range of input to a glomerulus was greater than that reported for individual receptor neurons. Finally, odorant activation slopes could differ across glomeruli, and for different odorants activating the same glomerulus. These results imply a high degree of complexity in odorant representations at the level of olfactory bulb input. 相似文献
11.
Vil-Viliams IF Kotovskaya AR 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》1994,1(1):P129-P132
An important goal of space medicine is preserving high tolerance and performance of cosmonauts an ring exposure to acceleration at the final flight stage given varying mission duration. Among physiological mechanisms limiting +Gx acceleration tolerance, an important role is played by disturbances of external respiration resulting from alterations of respiratory biomechanics, pulmonary gas exchange conditions, and arterial hypoxemia. However, at present data on external respiration changes during exposure to +Gx acceleration after simulated and real microgravity of varying duration, are extremely scanty. 相似文献
12.
Using the whole-cell mode of the patch-clamp technique, we attempted to record inward currents in response to cAMP, inositol 1,4, 5-trisphosphate (IP(3)) and odorants from sensory neurons in the olfactory epithelium of the Xenopus laevis lateral diverticulum (water nose). Dialysis of 100 microM of IP(3) induced inward currents, while dialysis of 1 mM of cAMP into olfactory neurons did not induce any response under the voltage-clamp conditions. Changes in membrane conductance were examined by applying ramp pulses. The slope of the current-voltage (I-V) curve during the IP(3)-induced response was steeper than that after the response, indicating that IP(3) increased the membrane conductance. The water nose olfactory neurons have been shown to respond to both amino acids and volatile odorants. The slopes of I-V curves during responses to amino acids and a volatile odorant, lilial, were similar to those before the responses, suggesting that the total membrane conductance was not changed during responses to amino acids and the volatile odorant. 相似文献
13.
Milotová M Riljak V Jandová K Bortelová J Maresová D Pokorný J Langmeier M 《Physiological research / Academia Scientiarum Bohemoslovaca》2008,57(2):275-282
The effect of ethanol on the structural development of the central nervous system was studied in offspring of Wistar rats, drinking 20 % ethanol during pregnancy and till the 28th day of their postnatal life. The structural changes in the hippocampus and dentate gyrus were analyzed at the age of 18, 35 and 90 days. A lower width of pyramidal and granular cell layers, cell extinction and fragmentation of numerous nuclei were found in all experimental animals compared to control animals. The extent of neural cell loss was similar in all monitored areas and in all age groups. At the age of 18 and 35 days, the degenerating cells were observed in the CA1 and CA3 area of the hippocampus and in the ventral and dorsal blade of the dentate gyrus. Numerous glial cells replaced the neuronal population of this region. Some degenerating cells with fragmented nuclei were observed at the age of 90 days. Our experiments confirmed the vulnerability of the developing central nervous system by ethanol intake during the perinatal period and revealed a long-lasting degeneration process in the hippocampus and dentate gyrus. 相似文献
14.
Chunmei Zhang Jinyuan YanYao Chen Chunyan ChenKeqin Zhang Xiaowei Huang 《Biotechnology advances》2014
Olfaction in Caenorhabditis elegans is a versatile and sensitive strategy to seek food and avoid danger by sensing volatile chemicals emitted by the targets. The ability to sense attractive odor is mainly accomplished by the AWA and AWC neurons. Previous studies have shown the components of the olfaction signal pathway in these two amphid chemosensory neurons, but integration of the individual signaling components requires further elucidation. Here we review the progresses in our understanding of signal pathways for attractive olfaction involving AWA and AWC neurons, and discuss how the different signal molecules might employ the common molecular cascades to transduce the olfactory system and guide behavior in each neuron. 相似文献
15.
Inbred and random-bred NMRI mice were treated with diethylstilbestrol (DES, 5 micrograms per day) or vehicle (olive oil) on Days 1-5 after birth. At the age of 8 wk, females were treated with saline or eCG and hCG to induce ovulation. Ova never occurred in the ampulla of the uterine tube of saline-treated, DES-treated females when these mice were not mated. After gonadotropin treatment, ova were found in the ampulla of all olive oil-treated females and in approximately 80% of DES-treated females. The number of ovulated ova was similar in both groups. Twenty percent of gonadotropin-treated, DES-treated females had ova in the ampulla and a vaginal plug after being caged with males but none became pregnant. Ovaries from inbred control or DES-treated females were grafted to the ovarian bursa of control or DES-treated ovariectomized hosts. DES-treated hosts, carrying control or DES-exposed ovaries, never became pregnant. Control females, with control ovaries or DES-exposed ovaries, became pregnant; pregnancy rate and litter size were similar for control mice regardless of whether they were supporting DES-exposed or control ovaries. Oocytes from ovaries exposed neonatally to DES can thus give rise to apparently normal offspring. The results also indicate DES-induced nonovarian disturbances, e.g. tubal and/or endometrial function, both of which are important for fertility. In the grafting experiments, a high mortality rate was found in inbred DES-exposed females caged with males. All deaths were associated with vaginal concrements (vaginal stones) and intestinal complications. 相似文献
16.
By means of luminescent histochemistry effect of a constant magnetic field with induction 60 mTl (exposition for 2, 6, 36 h and 7 days) has been studied in order to reveal contents of catecholamines in mesenteric mast cells and in the intestinal mesentery cells in 50 white Wistar rats. In 2-6 h specific luminescence of the mast cells increases, however, at prolongation of the exposure up to 30 h metabolism of catecholamines in the mast cells is inhibited noticeably++ (luminescence disappears). In 8 days amount of the mast cells and specific luminescence of catecholamines decrease. The essential shifts revealed in the system of the mast cells of the mammalian should be taken into consideration in the magnetic-therapeutic practice. Close spatial relations between the mast cells and the mesenteric adrenergic terminals have been elucidated, demonstrating their morphofunctional interconnection. 相似文献
17.
A A Zhirnova N N Shirokova B Ia Ryzhavski? 《Arkhiv anatomii, gistologii i émbriologii》1983,84(2):65-69
The liver in the white rats subjected to the effect of a low temperature for 80 days (23 h every day, 5-7 degrees C) has been studied by means of a complex of morphometric techniques. The investigation is also performed 35 days and 4 months after the exposure to cold has been stopped. In the animals decapitated immediately after the exposure to cold has been stopped, there is a certain decrease in the liver mass, in the size of hepatocytes, drop in the karyometric indices. The latter phenomenon is also observed in the liver of the animals 35 days after the exposure to cold has been stopped. In 4 months, the part of the binuclear hepatocytes and the nuclear size is greater than in the control. 相似文献
18.
Zhukovskaya MI 《Chemical senses》2012,37(5):421-429
Olfactory receptor cells in insects are modulated by neurohormones. Recordings from cockroach olfactory sensilla showed that a subset of sensory neurons increase their responses to selected nonpheromone odorants after octopamine application. With octopamine application, recordings demonstrated increased firing rates by the short but not the long alcohol-sensitive sensilla to the nonpheromone volatile, hexan-1-ol. Within the same sensillum, individual receptor cells are shown to be modulated independently from each other, indicating that the octopamine receptors reside in the receptor not in the accessory cells. A uniform decrease in the amplitude of electroantennogram, which is odorant independent, is suggested to reflect the rise in octopamine concentration in the antennal hemolymph. Perception of general odorants measured as behavioral responses changed qualitatively under octopamine treatment: namely, repulsive hexan-1-ol became neutral, whereas neutral eucalyptol became attractive. Octopamine induced a change in male behavioral responses to general odors that were essentially the same as in the state of sexual arousal. Our findings suggest that sensitivity to odors having different biological significances is modulated selectively at the peripheral as well as other levels of olfactory processing. 相似文献
19.
20.
Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants 总被引:3,自引:0,他引:3
Various odorants were found to depolarize azolectin liposomes. The results obtained are as follows. (1) Changes in the membrane potential of azolectin liposomes in response to various odorants were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [disS-C3(5)]. Ten odorants examined increased the fluorescence intensity of the liposome-dye suspensions in a dose-dependent manner, which indicates that odorants depolarize the liposomes. Concentrations of odorants that depolarized the liposomes greatly varied among the odorants. There existed a good correlation between the minimum concentrations of odorants to depolarize the liposomes and the thresholds of respective odorants in the frog or porcine olfactory responses. (2) Addition of sphingomyelin (SM) to azolectin led to a large enhancement of depolarizations by nonanol, citral, and n-amyl acetate. The results indicate that lipid composition of liposomes is one of the factors that control the sensitivity to odorants. (3) Odorants changed the membrane fluidity of the liposomes, which was monitored by changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). The membrane fluidity was changed in concentration ranges of odorants similar to those where the membrane potential changes occurred, which suggests that changes in the membrane fluidity are related to generation of the membrane potential changes. (4) Changes in the membrane potential in response to odorants were electrically measured with the planar lipid bilayer made of an azolectin-SM (2:1 w/w) mixture. It was shown that odorants (nonanol, citral, and n-amyl acetate) depolarized the planar lipid bilayer.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献