首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brazil is the world’s largest producer country of eucalyptus. Although widely applied in the charcoal industry, no studies have focused on the microorganisms associated with Eucalyptus microcorys. Here, we evaluated the composition and structure of endophytic fungal communities in leaves of E. microcorys through two isolation techniques. A total of 120 fresh leaves were collected in a year-long survey at an eucalyptus plantation in the State of São Paulo (Brazil). Endophytic fungi were isolated by particle filtration (PF) and direct leaf fragment plating (LP) in two media: modified dicloran and synthetic nutrient agar, both supplemented with rose bengal and chloramphenicol. The isolates were grouped into morphospecies and identified by morphology and DNA sequencing. We recovered a total of 709 isolates, representing 59 taxa. All taxa found are reported as endophytic for the first time for E. microcorys. Castanediella eucalypticola and Neophaeomoniella eucalypti are new occurrences reported for Brazil. The LP technique recovered a higher number of taxa and isolates than the PF. However, the PF technique retrieved a higher species/isolate ratio than the LP method, 0.12 and 0.09, respectively. Fungal diversity assessed by diversity metrics did not significantly differ between isolation methods. Both techniques recovered a high number of unique taxa, demonstrating that neither method would individually represent the species richness from E. microcorys. The use of LP and PF provided a greater number of observed taxa and consequently new occurrence of species for Brazil.  相似文献   

2.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

3.
Humulus japonicus in communities of Miscanthus sacchariflorus and Phragmites australis can grow large enough to overtop other species in the Amsa-dong floodplain. Because of strong winds and the weight of Humulus, plants of M. sacchariflorus and P. australis fell in mid-August and were subject to decomposition under its dense shading. To assess the effects of H. japonicus on nutrient cycling in these communities, we collected fresh samples of M. sacchariflorus and P. australis in litterbags and decomposed them under H. japonicus for 9 months, beginning in August. Biomass and organic contents from M. sacchariflorus during this incubation period were 49–51% and 44–48%, whereas those of P. australis were 49–61% and 32–52%, respectively. Their annual k values were 1.61–1.74 and 1.46–3.54, respectively. Initial N concentrations in M. sacchariflorus and P. australis were 13 and 20 mg g−1, while C:N ratios were 31 and 21, respectively. These results indicate that H. japonicus is responsible for the collapse of M. sacchariflorus and P. australis in August and also accelerates their nutrient cycling through rapid decomposition, thereby increasing nutrient circulation in floodplains.  相似文献   

4.
Bacteria of the genus Pantoea have become important plant pathogens worldwide in recent years. Pantoea ananatis was reported as the cause of maize white spot, a serious maize disease in Brazil, causing significant yield losses. However, very little information is available about how to detect this pathogen, its genetic variability and the putative alternative hosts in maize‐growing areas. To address these issues, we implemented a rapid and efficient PCR‐based method to identify P. ananatis isolated from leaves showing white spot symptoms and evaluated its genetic diversity in maize, sorghum and crabgrass. Of the 29 bacteria isolated from typical water‐soaked lesions of white spot disease that produced yellow colonies, 15 isolates were identified as P. ananatis by 16S rDNA sequencing and correctly detected by the PCR reaction, amplifying a specific fragment of the ice nucleation gene (ina). These P. ananatis isolates included 13 from maize, one from sorghum and one from crabgrass, while the other 14 yellow colony isolates were from other bacterial species, including two Pantoea species (Pantoea dispersa and Pantoea agglomerans) that were not amplified by the ina primers. These results indicate that the optimized PCR assay can be used to detect P. ananatis isolated from white spot lesions and could be used as a large‐scale and cost‐effective method of detecting this pathogen in leaf lesions on maize and other grasses. All isolates were evaluated for hypersensitive response (HR) on tobacco, revealing that some P. ananatis were able to induce HR. The high genetic variability revealed by rep‐PCR did not differentiated the P. ananatis isolates based on their hosts or HR reaction. The detection, characterization and diversity of P. ananatis from maize, sorghum and crabgrass in our study can be applied in understanding epidemiology and designing control strategies for maize white spot disease in Brazil.  相似文献   

5.
《Fungal biology》2020,124(11):940-957
Botrytis is a necrotrophic fungal genus of great economic importance worldwide. Together, the Botrytis species are able to infect over one thousand host plant species, including dicotyledons and monocotyledons. As the identification of Botrytis species in Brazil has mostly been based only on morphological characterization and comparisons of the rDNA ITS region, which is not informative in the genus, its diversity remains unknown. Thus, in this study we determined the diversity and prevalence of Botrytis spp. in Brazil by multilocus phylogeny. Phylogenetic reconstruction of the genus was performed using the nuclear genes glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and RNA polymerase II second largest subunit (RPB2). From analyses of 56 Botrytis isolates obtained from different hosts and geographical regions in Brazil, we found that Botrytis cinerea is the most prevalent species with considerable intraspecific genetic diversity detected by nuclear genes. Two new hosts to B. cinerea and eight host never previously reported in Brazil were found. We also reported for the first time the occurrence of Botrytis pseudocinerea associated with Acca sellowiana (Myrtaceae). Due to the new phylogenetic positioning of Botrytis pelargonii and Botrytis eucalypti, a taxonomic review of these species was suggested.  相似文献   

6.
Macrophomina pseudophaseolina is a new Macrophomina species reported on different crop and weed species in Brazil, India and Senegal, but to date there are no studies about its adaptability components. In this work, a collection of 62 M. pseudophaseolina isolates obtained from roots of the weed species Trianthema portulacastrum and Boerhavia diffusa collected in Northeastern Brazil, was used to: (a) study the effect of temperature and salinity on mycelial growth, (b) to determine their sensitivity to the fungicide carbendazim and (c) to assess their aggressiveness on melon and watermelon seedlings. Results showed variability among M. pseudophaseolina isolates. The optimum temperature for mycelial growth ranged between 26.4 and 38.1ºC. NaCl reduced the in vitro growth of all isolates, which were also highly sensitive to the fungicide carbendazim, exhibiting EC50 values ranging from 0.013 to 0.089 mg/L a.i. Disease severity values on melon and watermelon seedlings showed that M. pseudophaseolina isolates were more aggressive in melon than in watermelon. Information about adaptability components of M. pseudophaseolina obtained in this study could be incorporated on breeding programs for melon and watermelon crops.  相似文献   

7.
To test the hypothesis that the species could be more beneficial in association with two-nurse species than with single-nurse species, we surveyed an arid shrub-herbaceous community primarily composed of two dominant species, Achnatherum splendens and Nitraria tangutorum and two associate species, Phragmites australis and Reaumuria soongorica in Northwest China. The performance (frequency, abundance, and size) of the two associate species in neighbored patches (patches formed by a dominant species which were closely adjacent to the patches formed by the other dominant species), isolated patches (patches formed by one dominant species with no neighbor), and open areas was compared to analyze the individual and combined effects of the two dominant species. A. splendens and N. tangutorum appeared to have reciprocal facilitation effects when growing adjacent to one another, as evidenced by the increased size of neighbored patches over isolated ones. The individual effects of A. splendens on the associate species should be generally neutral, since the frequency, abundance, size, and co-occurrence frequency of the two associate species in isolated A. splendens patches and open areas were the same (except for the significantly larger size of R. soongorica in isolated A. splendens patches). The individual effects of N. tangutorum were positive to the associate species R. soongorica, as evidenced by the fact that the frequency and abundance of R. soongorica was significantly higher (P < 0.05), and the size of two associate species was significantly larger (P < 0.05), in isolated N. tangutorum patches than in open areas. However, the frequency and abundance of P. australis, and the co-occurrence frequency of the two associate species in isolated N. tangutorum patches and in open areas were the same. In comparison to the isolated patches, there were significantly higher frequency and abundance (P < 0.05), larger sizes (P < 0.05), and higher co-occurrence frequency (P < 0.05) of the two associate species in neighbored N. tangutorum patches. Since the neighbored patches could be influenced by both dominant species, the combined effects of A. splendens and N. tangutorum were identified as positive and over-additive. We suggested that the indirect facilitation or synergistic effects could account for the combined effects of the two dominant species.  相似文献   

8.
The grape leafhopper Empoasca vitis (Homoptera: Cicadellidae) is regarded as a major insect pest in many European grapevine growing areas, with an increasing importance realized in recent years maybe as a result of climatic change. Both larvae and adults feed on the phloem vessels of the leaves, causing characteristic symptoms also referred to as hopperburn. Phenology of adult leafhoppers was monitored in one vineyard in three successive years and indicated that immigration of a few hibernated E. vitis individuals into vineyards might take place already quite early in the year depending on winter temperatures and starts to progress in substantial numbers right at grapevine bud burst. In addition, these monitoring studies have shown that there are several other leafhopper species occurring on grapevine plants besides E. vitis, such as the rose leafhopper Edwardsiana rosae (Homoptera: Cicadellidae). Here, we report on the development of larval instars of both leafhopper species, E. vitis and E. rosae on grapevine leaves under different temperature regimes in the laboratory. Shortest larval developmental time was observed at night temperatures of 13–15°C and day temperatures of 23–25°C, which was in agreement with predicted optimal temperatures for both species. At the temperature regime of 20°C night and 30°C day temperature, either no egg hatch was observed or early development of first‐instar larvae was not successful for both species. These results suggest that warm (18°C) nights and moderately warm (28°C) days are representing the upper thermal threshold for development of both E. vitis and E. rosae embryonic stages on grapevine leaves, questioning current assumptions of an increasing importance of E. vitis as a grapevine pest under future climate change.  相似文献   

9.

To understand the mechanism of how Phragmites australis makes valuable floating mat biotopes under oligotrophic conditions, we investigated the environmental (water chemistry) and vegetational characteristics (growth, plant species richness, and floristic composition) of a floating mat consisting of three main mat-forming species with a zonal distribution (P. australis on the land side of the floating mat, Zizania latifolia on the middle area, and Typha angustifolia on the water side). Although they showed relatively low growth in the floating mat, compared to those in land-based wetlands, P. australis grew better than other mat-forming species in terms of shoot height and biomass production. Specifically, P. australis made more below-ground parts (593?±?38 g/m2) than other mat-forming species (Z. latifolia, 100?±?10 g/m2; T. angustifolia, 167?±?8 g/m2) and more companion species were found in P. australis-dominated plots (8.5?±?1.0 species/m2) than other plots (Z. latifolia-dominated plots, 2.7?±?0.6 species/m2; T. angustifolia-dominated plots, 1.0?±?0.0 species/m2). The larger amount of below-ground P. australis parts could contribute to thicker and denser mat structures, possibly providing more favorable habitats for neighboring plant species, thus facilitating more companion species within the P. australis-dominated area of the mat.

  相似文献   

10.
Decomposition rates of Phragmites australis, Carex riparia, Nuphar luteum and Salvinia natans and benthic processes were measured from December 2003 to December 2004 in a shallow wetland (Paludi di Ostiglia, Northern Italy) by means of litter bags and intact cores incubations. Decay rate was highest for N. luteum (k = 0.0152 d−1), intermediate for S. natans (k = 0.0041 d−1) and similar for P. australis (k = 0.0027 d−1) and C. riparia (k = 0.0028 d−1).Benthic metabolism followed a seasonal pattern with summer peaks of O2 demand and TCO2, CH4 and NH4+ efflux whilst soluble reactive phosphorus (SRP) fluxes were negligible also under hypoxic conditions, indicating that P was mainly retained by sediment. The initial C:P ratio was similar in N. luteum and S. natans (170) and significantly lower than that of P. australis and C. riparia (360). During the detritus decay P was progressively lost by N. luteum and S. natans tissues, whereas, after an initial leaching, it was probably re-used during the microbial decomposition of the more refractory P. australis and C. riparia detritus. Nuphar luteum, P. australis and S. natans had comparable initial C:N mass ratio (15), significantly lower than that of C. riparia (26). The C:N ratio was rather constant for N. luteum (12.9 ± 1.5) and S. natans (14.6 ± 0.9), decreased slightly to below 20 for C. riparia and increased up to 30 for P. australis. Overall, differences among species were likely due to the recalcitrance of decomposing detritus, whilst process rates were controlled by limitation of microbial processes by nutrients and electron acceptor availability.  相似文献   

11.
The aphidophagous ladybird beetle, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), is a dominant predator in various crop systems. Its life history was studied when fed on three aphid prey, viz. Aphis gossypii Glover, Aphis fabae Scopoli and Macrosiphum rosae (L.), under laboratory conditions, 25 ± 1 °C, 65 ± 5 % RH and a photoperiod of 16L:8D. The immature development period was shortest (15.2 days) when A. gossypii was used as prey and longest (18.9 days) on A. fabae. Adult coccinellids had the shortest longevity on A. fabae (64.8 days). The higher and lower mean daily fecundity was recorded for A. fabae (12.4 eggs) and M. rosae (6.2 eggs), respectively. The highest (291.0 eggs) and lowest (183.2 eggs) net reproduction rates (R 0) were observed on A. fabae and M. rosae, respectively. Mean generation time (T) on rose aphid was significantly longer (33.4 days) than on the two other preys. The intrinsic rate of increase (r m) was affected by the R 0 value, and it was highest on A. fabae (0.183) and lowest on M. rosae (0.156). Based on r m as an index of suitability of prey species, A. fabae was the most suitable prey for H. variegata. Our finding may provide basic information for developing aphid biological control programs.  相似文献   

12.
Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self‐compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80–216 m) and an upland site (1010–1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (FST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation‐by‐distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ~10‐20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for bottleneck.  相似文献   

13.
We used a multistrain approach to study the intra‐ and interspecific variability of the growth rates of three Pseudo‐nitzschia species – P. australis, P. fraudulenta, and P. pungens – and of their domoic acid (DA) production. We carried out mating and batch experiments to investigate the respective effects of strain age and cell size, and thus the influence of their life cycle on the physiology of these species. The cell size – life cycle relationship was characteristic of each species. The influence of age and cell size on the intraspecific variability of growth rates suggests that these characteristics should be considered cautiously for the strains used in physiological studies on Pseudo‐nitzschia species. The results from all three species do not support the hypothesis of a decrease in DA production with time since isolation from natural populations. In P. australis, the cellular DA content was rather a function of cell size. More particularly, cells at the gametangia stage of their life cycle contained up to six times more DA than smaller or larger cells incapable of sexual reproduction. These findings reveal a link between P. australis life cycle and cell toxicity. This suggest that life cycle dynamics in Pseudo‐nitzschia natural populations may influence bloom toxicity.  相似文献   

14.
Colonies of Diplocarpon rosae derived from single conidia were isolated on malt extract agar, multiplied (at 23°C) and stored (at ?20°C) on surface‐sterilised leaf discs of a universally susceptible rose, ‘Frensham’. The resistance of 16 species and cultivars of Rosa to different isolates of D. rosae was assessed using surface‐sterilised leaf discs. Four pathotypes of D. rosae were distinguished on the basis of host range. One species and one hybrid were resistant to all pathotypes. Two species and two cultivars were susceptible to all pathotypes. Four species and six cultivars were interpreted as having vertical resistance because they were strongly resistant to some but not all pathotypes. Only species and hybrids of the section Cinnamomeae were resistant to the pathotype identified as CW1 whereas only roses of other origins were resistant to the pathotype DA2.  相似文献   

15.
Anthracnose caused by Elsinoë ampelina is one of the most important table grape diseases in humid regions in Brazil and Australia. The objective of this study was to characterize E. ampelina isolates from Brazil and Australia by means of phylogenetic analyses, morphological features and pathogenicity tests. Phylogenetic relationships among 35 isolates were determined based on a data set of internal transcribed spacer (ITS), histone H3 (HIS3) and elongation factor 1‐α (TEF) sequences. In phylogenetic tree analyses, using a combined ITS and TEF sequence alignment, all E. ampelina isolates were clustered together in a single well‐supported clade. In contrast to the absence of genetic variability within ITS and TEF sequences, HIS3 sequences showed 54 polymorphic sites. The haplotype network generated from HIS3 data set showed four distinct haplotypes. EA1 was the predominant haplotype including 29 isolates from both countries. High genetic variability was observed in two Brazilian isolates, haplotype EA4, which may have lost the intron region during species evolution. Colony colours differed between Brazilian and Australian isolates, but showed similar wrinkled colony texture, absence of spores, sparse‐to‐absent white aerial mycelium and slow growth (0.049–0.060 mm/day). Brazilian isolates produced conidia of 5.65 × 2.65 μm, larger than conidia from Australian isolates, which measured 5.14 × 2.30 μm. In pathogenicity tests, all nine Australian isolates inoculated were pathogenic on detached canes and potted vines of table grape.  相似文献   

16.
《Fungal biology》2022,126(4):290-299
Sugarcane is a widely cultivated crop in Brazil and in many parts of the world. However, the red rot causes huge losses due to the reduction of sucrose and deterioration of the juice. The aim of this study was to identify Colletotrichum species associated with the red rot through polyphasic approaches; which included phylogenetic, morpho-cultural analyzes and pathogenicity tests. Nine isolates from the states of Alagoas and two from São Paulo, Brazil, were preliminary analyzed with the glyceraldehyde-3 phosphate dehydrogenase gene (GAPDH), as an initial measure for species diversity. Later on, the representative isolates of each species were sequenced with the β-tubulin (TUB2) gene, calmodulin (CAL), DNA lyase (APN2/MAT IGS) and the ITS-rDNA region. Morphocultural characterization was performed by evaluating the mycelial growth rate (MGR), colony appearance and the shape and size of 50 conidia and appressoria. For the pathogenicity test asymptomatic leaves and stalks of sugarcane were tested with and without injuries. Phylogenetic analysis associated with morphocultural characteristics and the pathogenicity test of the eleven isolates revealed three Colletotrichum species: Colletotrichum falcatum (8 isolates), Colletotrichum siamense (1 isolate) and Colletotrichum plurivorum (2 isolates) causing the red rot disease in sugar cane. All species were pathogenic in wounded leaves and stalks, being C. falcatum the one causing the largest lesions (1.12 cm) in leaves and C. plurivorum in stalks (0.67 cm). Therefore, this study confirms the association of C. falcatum as a sugarcane pathogen and records for the first time worldwide the occurrence of C. siamense and C. plurivorum associated with this host.  相似文献   

17.
18.
We examined the capability of hyperspectral imagery to map habitat types of under-storey plants in a moist tall grassland dominated by Phragmites australis and Miscanthus sacchariflorus, using hyperspectral remotely-sensed shoot densities of the two grasses. Our procedure (1) grouped the species using multivariate analysis and discriminated habitat types (species groups) based on P. australis and M. sacchariflorus shoot densities, (2) used estimated shoot densities from hyperspectral data to draw a habitat type map, and (3) analyzed the association of threatened species with habitat types. Our identification of four habitat types, using cluster analysis of the vegetation survey coverage data, was based on P. australis and M. sacchariflorus shoot density ratios and had an overall accuracy of 77.1% (kappa coefficient = 0.71). Linear regression models based on hyperspectral imagery band data had good accuracy in estimating P. australis and M. sacchariflorus shoot densities (adjusted R 2 = 0.686 and 0.708, respectively). These results enabled us to map under-storey plant habitat types to an approximate prediction accuracy of 0.537. Among the eight threatened species we examined, four exhibited a significantly biased distribution among habitat types, indicating species-specific habitat use. These results suggest that this procedure can provide useful information on the status of potential habitats of threatened species.  相似文献   

19.
The cassava green mite (CGM), Mononychellus tanajoa, a native of South America was accidentally introduced into Africa where it causes serious crop losses. The possibility of introducing classical biological agents from the native home of CGM into Africa was investigated. Thus, we conducted a series of laboratory assays of the native fungal pathogens, Neozygites tanajoae from Brazil and Neozygites floridana from Colombia and Brazil, and compared them with N. tanajoae isolates from Benin. Infectivity of both fungal species, was assayed against the twospotted spider mite, Tetranychus urticae, and against the red mite, Oligonychus gossypii. Pathogenicity against CGM and host range studies were conducted by transferring adult females of each mite species to leaf discs containing sporulated cadavers with a halo of conidia of each fungal isolate. All isolates caused some degree of infectivity to CGM. None of the isolates of N. floridana and N. tanajoae tested were pathogenic to O. gossypii, and only two isolates infected T. urticae. Most isolates from Brazil were highly virulent and infected only CGM. Sixteen N. tanajoae isolates caused more than 89% mortality and more than 62% of the CGM became mummified. A mummified CGM is characteristically a swollen, brown fungus-killed mite that has great potential to produce conidia. However, high mortality was not always associated with high mummification. The median mummification time ranged from 4.4 to 6.7 days. Five Brazilian isolates caused >75% mummification with a median mummification time <5 days. Isolates that cause high mummification in a short period of time would be more likely to cause epizootics and to establish in the new environment. Therefore, these isolates would be the best candidates for introduction to Africa.  相似文献   

20.
Compared with non‐invasive species, invasive plant species may benefit from certain advantageous traits, for example, higher photosynthesis capacity and resource/energy‐use efficiency. These traits can be preadapted prior to introduction, but can also be acquired through evolution following introduction to the new range. Disentangling the origins of these advantageous traits is a fundamental and emerging question in invasion ecology. We conducted a multiple comparative experiment under identical environmental condition with the invasive haplotype M lineage of the wetland grass Phragmites australis and compared the ecophysiological traits of this invasive haplotype M in North America with those of the European ancestor and the conspecific North American native haplotype E lineage, P. australis ssp. americanus. The invasive haplotype M differed significantly from the native North American conspecific haplotype E in several ecophysiological and morphological traits, and the European haplotype M had a more efficient photosynthetic apparatus than the native North American P. australis ssp. americanus. Within the haplotype M lineage, the introduced North American P. australis exhibited different biomass allocation patterns and resource/energy‐use strategies compared to its European ancestor group. A discriminant analysis of principal components separated the haplotype M and the haplotype E lineages completely along the first canonical axis, highly related to photosynthetic gas‐exchange parameters, photosynthetic energy‐use efficiency and payback time. The second canonical axis, highly related to photosynthetic nitrogen use efficiency and construction costs, significantly separated the introduced P. australis in North America from its European ancestor. Synthesis. We conclude that the European P. australis lineage was preadapted to be invasive prior to its introduction, and that the invasion in North America is further stimulated by rapid post‐introduction evolution in several advantageous traits. The multicomparison approach used in this study could be an effective approach for distinguishing preadaptation and post‐introduction evolution of invasive species. Further research is needed to link the observed changes in invasive traits to the genetic variation and the interaction with the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号