首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of the lethal amphibian fungus Batrachochytrium dendrobatidis relies on PCR-based techniques. Although highly accurate and sensitive, these methods fail to distinguish between viable and dead cells. In this study a novel approach combining the DNA intercalating dye ethidium monoazide (EMA) and real-time PCR is presented that allows quantification of viable B. dendrobatidis cells without the need for culturing. The developed method is able to suppress real-time PCR signals of heat-killed B. dendrobatidis zoospores by 99.9 % and is able to discriminate viable from heat-killed B. dendrobatidis zoospores in mixed samples. Furthermore, the novel approach was applied to assess the antifungal activity of the veterinary antiseptic F10® Antiseptic Solution. This disinfectant killed B. dendrobatidis zoospores effectively within 1 min at concentrations as low as 1:6400.  相似文献   

2.
Aims: To develop a quick and accurate PCR‐based method to evaluate viable Bifidobacterium breve strain Yakult (BbrY) in human faeces. Methods and Results: The number of BbrY in faeces was detected by using strain‐specific quantitative real‐time PCR (qPCR) derived from a randomly amplified polymorphic DNA analysis. And using propidium monoazide (PMA) treatment, which combined a DNA‐intercalating dye for covalently linking DNA in dead cells and photoactivation, only viable BbrY in the faeces highly and significantly correlated with the number of viable BbrY added to faecal samples within the range of 105–109 cells per g of faeces was enumerated. After 11 healthy subjects ingested 10·7 log CFU of BbrY daily for 10 days, 6·9 (±1·5) log CFU g?1 [mean (±SD)] of BbrY was detected in faeces by using strain‐specific transgalactosylated oligosaccharide–carbenicillin (T‐CBPC) selective agar medium. Viable BbrY detected by qPCR with PMA treatment was 7·5 (±1·0) log cells per g and the total number (viable and dead) of BbrY detected by qPCR without PMA treatment was 8·1 (±0·8) log cells per g. Conclusions: Strain‐specific qPCR with PMA treatment evaluated viable BbrY in faeces quickly and accurately. Significance and Impact of the Study: Combination of strain‐specific qPCR and PMA treatment is useful for evaluating viable probiotics and its availability in humans.  相似文献   

3.
The genetic relationship within 26 Xanthomonas arboricola pv. fragariae strains and between this pathovar and 20 strains of X. arboricola pv. corylina, 22 strains of X. arboricola pv. juglandis and 16 strains of X. arboricola pv. pruni has been assessed by means of repetitive polymerase chain reaction (rep‐PCR) using Enterobacterial Repetitive Intergenic Consensus), BOX (BOXA subunit of the BOX element of Streptococcus pneumoniae) and repetitive extragenic palindromic primer sets. Cluster analysis was performed by means of unweighted paired group method using arithmetic average (UPGMA). Upon rep‐PCR and UPGMA cluster analysis, a relevant genetic diversity was found within the strains. The overall similarity, however, was high (i.e. 80%). The four X. arboricola pathovars showed similar but clearly different genomic patterns and clustered into four different groups, with X. arboricola pv. corylina and X. arboricola pv. juglandis more closely related to X. arboricola pv. fragariae. Representative strains of X. arboricola pv. fragariae and the putative xanthomonads isolated from strawberry leaves showing leaf blight symptoms underwent pathogenicity tests. After artificial inoculation, X. arboricola pv. fragariae induced necrotic spots accompanied, sometimes, by a chlorotic halo. The blackening of the leaf veins and peduncle was, sometimes, also observed. The four putative xanthomonads isolated from diseased strawberry leaves and not inducing symptoms after artificial inoculation, clustered apart from X. arboricola pathovars.  相似文献   

4.
基于EMA-qPCR的茄科青枯菌活体检测技术的建立   总被引:1,自引:0,他引:1  
【目的】利用特异性核酸染料叠氮溴乙锭(Ethidium monoazide bromide, EMA)与实时荧光定量PCR技术相结合, 建立一种能有效区分青枯菌死活细胞的检测方法。【方法】样品DNA制备前经EMA渗透预处理, 再进行实时荧光定量PCR特异扩增菌体DNA。【结果】终浓度为2.0 mg/L的EMA能有效排除1.0×107 CFU/mL灭活青枯菌细胞DNA的扩增, 对活细胞和不可培养状态(Viable but non-culturable, VBNC)活菌的DNA扩增均没有影响。当每个定量PCR反应体系中的活细胞在5.0×100?5.0×104 CFU范围内时, 扩增Ct值与定量PCR反应体系中活细胞CFU对数值呈良好的负相关性(R2=0.992 5)。比较EMA-qPCR法和平板计数法对经过不同温度短期保存的青枯菌检测结果发现, 待检样品可在24 °C与4 °C冷藏条件下短期保存。【结论】本研究建立的EMA-qPCR方法能有效检测青枯菌VBNC细胞和有效区分死活菌, 避免或减少青枯菌PCR检测的假阳性和假阴性。  相似文献   

5.
Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infection is common and contributes to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay as an efficient method for detection of asymptomatic infections of X. fragariae. In addition, a new method of sample preparation was developed that allows sampling of a larger amount of plant tissue, hence increasing the detection rate in real-life samples. The sample preparation procedure includes an overnight incubation of strawberry tissues in phosphate-buffered saline (PBS), followed by a quick sample concentration and a boiling step to extract DNA for amplification. The detection limit of the LAMP assay was approximately 2×103 CFU/mL for pure bacteria culture and 300 CFU/mL for bacteria spiked strawberry leaf and petiole samples. LAMP provided a 2–3 fold lower detection limit than the standard qPCR assay but was faster, and more user-friendly. The LAMP assay should serve as a rapid, sensitive and cost-effective tool for detecting asymptomatic infections of X. fragariae in strawberry nursery stock and contribute to improved disease management.  相似文献   

6.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

7.
Aims: The detection of viable Enterobacter sakazakii cells is important due to the association of this pathogen with outbreaks of life-threatening neonatal infections. The aim of this study was to optimize a PCR-based method for selective detection of only viable Ent. sakazakii cells in the presence of dead cells, utilizing propidium monoazide (PMA) or ethidium bromide monoazide (EMA). Methods and Results: PMA or EMA was added to suspensions of viable and/or dead Ent. sakazakii cells at varying concentrations (10, 50 or 100 μg ml−1) prior to DNA isolation and PCR with Ent. sakazakii-specific primers. At concentrations of 50 and 100 μg ml−1, PMA completely inhibited PCR amplification from dead cells, while causing no significant inhibition of the amplification from viable cells. PMA was also effective in allowing selective PCR detection of only viable cells in mixtures of varying ratios of viable and dead cells. EMA was equally effective in preventing amplification from dead cells, however, it also inhibited DNA amplification from viable cells. Conclusions: This study demonstrated the efficiency of PMA for viable and dead differentiation of Ent. sakazakii, as well as the lack of selectivity of EMA for this purpose. Significance and Impact of the Study: PMA-PCR, in particular, will be useful for monitoring the resistance, survival strategies and stress responses of Ent. sakazakii in foods and the environment.  相似文献   

8.
Aims:  The DNA-intercalating dye ethidium bromide monoazide (EMA) has recently been used as a DNA binding agent to differentiate viable and dead bacterial cells by selectively penetrating through the damaged membrane of dead cells and blocking the DNA amplification during the polymerase chain reaction (PCR). We optimized and tested the assay in vitro using Staphylococcus aureus and Staphylococcus epidermidis cultures to distinguish viable from dead bacteria, with the goal of reducing false positive PCR results.
Methods and Results:  Viable and heat-inactivated bacteria were treated with EMA or left untreated before DNA extraction. A real-time PCR assay for the detection of the tuf gene in each DNA extract was used. Our results indicated that EMA influenced viable bacteria as well as dead bacteria, and the effect of EMA depended on the EMA concentration and bacterial number.
Conclusions:  EMA is not a suitable indicator of bacterial viability, at least with respect to Staphylococcus species.
Significance and Impact of the Study:  Determining the viability of pathogens has a major impact on interpreting the results of molecular tests for bacteria and subsequent clinical management of patients. To this end, several methods are being evaluated. One of these methods – intercalating DNA of dead bacteria by EMA – looked very promising, but our study found it unsatisfactory for S. aureus and coagulase-negative Staphylococci.  相似文献   

9.
Gnomonia fragariae is a poorly studied ascomycete belonging to Diaporthales. Originally G. fragariae was considered a saprophyte occurring on dead tissues of strawberry plants. Recently this fungus was found in Latvia and Sweden, and it was proven to be the cause of severe root rot and petiole blight of strawberry. Thirteen isolates of this pathogen and several other Gnomonia species occurring on rosaceous hosts were characterized by molecular analysis using nucleotide sequences of partial LSU rRNA gene and the total ITS region. The homologous regions from relevant diaporthalean taxa available in the GenBank were also included and compared with the taxa sequenced in this study. Phylogenetic analyses revealed that G. fragariae, G. rubi, and Gnomonia sp. (CBS 850.79) were genetically different from G. gnomon, the type species of the genus, and other members of Gnomoniaceae. The analyses showed that G. fragariae and Hapalocystis were genetically very closely related, forming a phylogenetic clade, which is possibly presenting a new family in the Diaporthales. Morphological comparisons of the Gnomonia species on the basis of commonly used criteria for the taxonomy of Diaporthales, so far did not reveal any evident features for the polyphyletic status of Gnomonia.  相似文献   

10.
 Bulked segregant analysis (BSA) was used to identify seven random amplified polymorphic DNA (RAPD) markers linked to the Rpf 1 gene. Rpf 1 confers resistance to Phytophthora fragariae var. fragariae, the causal agent of red stele root rot in Fragaria spp. The bulked DNAs represented subsets of a F1 population obtained from the cross Md683×Senga Sengana which consisted of 60 plants and segregated in a 1:1 ratio for resistance or susceptibility to race 2.3.4 isolate NS2 of P.  fragariae. Seven markers were shown to be linked to Rpf 1 and were generated from four primers; five of these markers were in coupling phase and two in repulsion phase with respect to the gene. A linkage map of this resistance gene region was generated using JoinMap 2.0TM. The manner in which Rpf 1 and the linked markers co-segregated indicated that they are inherited in a disomic fashion. These markers could enable gene pyramiding and marker-assisted selection of resistance genes in strawberry breeding programmes. Received: 26 August 1996 / Accepted: 20 December 1996  相似文献   

11.
Aims: To optimize ethidium monoazide (EMA) coupled with real‐time quantitative PCR (qPCR) and to evaluate its environmental applicability on quantifying viable legionellae in water and biofilm of cooling towers and hot water systems. Methods and Results: EMA (0·9–45·5 μg ml?1) and propidium monoazide (PMA, 0·9 and 2·3 μg ml?1) combined with qPCR (i.e. EMA‐qPCR and PMA‐qPCR, respectively) were applied to unheated and heated (70°C for 30 min) Legionella pneumophila to quantify viable cells, which was also simultaneously determined by BacLight Bacterial Viability kit with epifluorogenic microscopic enumeration (BacLight‐EM). The effects of nontarget microflora and sample matrix on the performance of EMA‐qPCR were also evaluated. In comparison with BacLight‐EM results, qPCR with EMA at 2·3 μg ml?1 was determined as the optimal EMA‐qPCR assay, which performed equally well as PMA‐qPCR for unheated Leg. pneumophila but better than PMA‐qPCR for heated Leg. pneumophila (P < 0·05). Moreover, qPCR with EMA at 2·3 μg ml?1 accurately quantified viable Leg. pneumophila, Legionella anisa and Legionella‐like amoebal pathogens 6 (LLAP 6) without interferences by heated legionellae, unheated nonlegionellae cells and cooling tower water matrix (P > 0·05). As for water and biofilm samples collected from cooling towers and hot water systems, the viable legionellae counts determined by EMA‐qPCR were mostly greater than the culturable counts by culture assay but consistently lower than the total cell counts quantified by qPCR. Conclusions: The qPCR with EMA at 2·3 μg ml?1 may accurately quantify viable legionellae (including fastidious LLAP 6) and Leg. pneumophila pretreated with superheating and is applicable for water and biofilm samples obtained from cooling towers and hot water systems. Significance and Impact of the Study: The EMA‐qPCR assay may be useful in environmental surveillance for viable legionellae and in evaluation of superheating efficacy against legionellae.  相似文献   

12.
Nogva HK  Drømtorp SM  Nissen H  Rudi K 《BioTechniques》2003,34(4):804-8, 810, 812-3
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Even so, the lack of differentiation between DNA from viable and dead cells is one of the major challenges for diagnostic DNA-based methods. Certain nucleic acid-binding dyes can selectively enter dead bacteria and subsequently be covalently linked to DNA. Ethidium monoazide (EMA) is a DNA intercalating dye that enters bacteria with damaged membranes. This dye can be covalently linked to DNA by photoactivation. Our goal was to utilize the irreversible binding of photoactivated EMA to DNA to inhibit the PCR of DNA from dead bacteria. Quantitative 5'-nuclease PCR assays were used to measure the effect of EMA. The conclusion from the experiments was that EMA covalently bound to DNA inhibited the 5'-nuclease PCR. The maximum inhibition of PCR on pure DNA cross-linked with EMA gave a signal reduction of approximately -4.5 log units relative to untreated DNA. The viable/dead differentiation with the EMA method was evaluated through comparison with BacLight staining (microscopic examination) and plate counts. The EMA and BacLight methods gave corresponding results for all bacteria and conditions tested. Furthermore, we obtained a high correlation between plate counts and the EMA results for bacteria killed with ethanol, benzalkonium chloride (disinfectant), or exposure to 70 degrees C. However, for bacteria exposed to 100 degrees C, the number of viable cells recovered by plating was lower than the detection limit with the EMA method. In conclusion, the EMA method is promising for DNA-based differentiation between viable and dead bacteria.  相似文献   

13.
Ethidium bromide monoazide (EMA) was utilized to selectively allow conventional PCR amplification of target DNA from viable but not dead cells from a broth culture of bacterial mixed flora derived from cod fillets. The universal primers designated DG74 and RW01 that amplify a 370-bp sequence of a highly conserved region of all eubacterial 16S rDNA were used for the PCR. The use of 10 μg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable bacteria. The minimum amount of EMA to completely inhibit the PCR amplification of DNA derived from dead bacterial cells was 0.8 μg/ml. Amplification of target DNA from only viable cells in a suspension with dead cells was selectively accomplished by first treating the cells with 1 μg/ml of EMA. A standard curve was generated relating the intensity of fluorescence of DNA bands to the log of CFU of mixed bacterial cultures for rapidly assessing the number of genomic targets per PCR derived from the number of CFU. A linear range of DNA amplification was exhibited from 1 × 102 to 1 × 105 genomic targets per PCR. The viable/dead cell discrimination with the EMA-PCR method was evaluated by comparison with plate counts following freezing and thawing. Thawing frozen cell suspensions initially containing 1 × 105 CFU/ml at 4, 20, and 37 °C yielded a 0.8 log reduction in the number of viable cells determined by both plate counts and EMA-PCR. In contrast, thawing for 5 min at 70 °C resulted in a 5 log reduction in CFU derived from plate counts (no CFU detected) whereas the EMA-PCR procedure resulted in only a 2.8 log reduction in genomic targets, possibly reflecting greater damage to enzymes or ribosomes at 70 °C to a minority of the mixed population compared to membrane damage.  相似文献   

14.
Detection of Phytophthora fragariae Hickman in roots of strawberry cultivar ‘Tenira’ by enzyme-linked immunosorbent assay (ELISA) Phytophthora fragariae Hickman is detected by ELISA in roots of strawberry cv. ‘Tenira’. Because of the high sensitivity of ELISA presence on fungal antigen was demonstrated before symptoms are detected in microscopical investigations.  相似文献   

15.
Bacterial immobilization by metal hydroxides can be used for enrichment of various bacterial strains including Gram (+) and Gram (−). The polymerase chain reaction (PCR)-based bacterial detection without enrichment culture could be implemented by concentrating bacteria from food matrix by metal hydroxides. To distinguish between viable and non-viable cells, it is often required to detect the mRNA, an indicator of viable cells. This technique, although provides accurate and reliable result, is expensive and time-consuming. Here, we report the studies on application of DNase I treatment to eliminate DNA from dead cells and subsequently detect the presence of viable pathogens by conventional PCR. It was found that treatment of immobilized cells with DNase I for 1 h at 37°C prior to DNA extraction could efficiently eliminate false positives due to the presence of non-viable cells. The technique was used to detect the presence of various pathogens in food model. The detection limits for Escherichia coli O157:H7 (384 bp), Listeria monocytogenes (482 bp), and E. coli wild type (580 bp) was 5 × 101 cells and that for Salmonella typhimurium (685 bp) was 5 × 102 cells in 10 ml of whole milk. An erratum to this article can be found at  相似文献   

16.
Aims: Ethidium bromide monoazide (EMA) has been determined to cause delay in DNA amplification from dead bacteria at real‐time PCR. However, there is concern that the increasing EMA concentration to suppress amplification from high number of dead bacteria also affects live bacteria. The aim is to disclose a novel application of EMA for food hygienic test. Methods and Results: We performed a low‐dose double EMA treatment. Live or heat‐dead Enterobacter sakazakii (reclassified as Cronobacter spp.) in 10% powdered infant formula (PIF) solution was subjected to a treatment with 20 μg ml?1 of EMA followed by a treatment with 10 μg ml?1 of EMA without washing, and direct real‐time PCR. We observed that DNA amplification from 107 cells ml?1 of dead Ent. sakazakii was completely suppressed within 50 cycles of PCR, whereas 102–103 cells ml?1 of viable cells could be detected. When a 3‐h enrichment step in liquid medium was included after the first EMA treatment, live Ent. sakazakii could be detected at initial levels of 100–102 cells ml?1. We compared the low‐dose double‐treated EMA‐PCR with the culture method using 80 samples of PIF, and completely correlative results were obtained for both methods. Conclusions: We concluded that the newly developed low‐dose double‐treated EMA‐PCR is a very effective tool for live Ent. sakazakii detection in PIF. Significance and Impact of the Study: We focused on the specific nature of photoreactive compound that residual EMA is cancelled by irradiation. We were successful in treating bacteria with EMA in gradient concentration to increase live and dead distinction ability.  相似文献   

17.
Molecular typing was applied and optimized for genetic characterization for three pathogenic variants of Xanthomonas axonopodis pv. citri (Xac) from Taiwan. These three novel variants of atypical symptom–producing X. axonopodis pv. citri were designated as Xac‐Af, Xac‐Ap and Xac‐Ar. Based on polymerase chain reaction (PCR) with primers specific to X. axonopodis pv. citri, leucine‐responsive regulatory protein (lrp) gene assay and DNA fingerprintings generated by repetitive‐sequence PCR (rep‐PCR) and amplified fragment length polymorphism (AFLP) were used to compare strains including the three types of atypical symptom–producing strains Xac‐Af, Xac‐Ap and Xac‐Ar, and additional reference strains from pathotypes Xac‐A, Xac‐A*, Xac‐Aw, X. axonopodis pv. auruantifolii and X. axonopodis pv. citrumelo. These three types of X. axonopodis pv. citri variants can be detected with six sets of primer specific for X. axonopodis pv. citri. Cluster analyses by lrp sequence assay, AFLP and combing the band patterns of rep‐PCR clearly grouped the atypical symptom–producing variants in types Xac‐ Af, Xac‐Ar and Xac‐Ap into the same cluster with typical symptom‐producing strains in pathotype Xac‐A. These three types of X. axonopodis pv. citri variants could be excluded from strains of Xac‐A* and Xac‐Aw in these genotypic analyses. Strains of Xac‐A* and Xac‐Aw were closely related to Xac‐A strains in our results. No Taiwan isolate was related to X. axonopodis pv. auruantifolii or X. axonopodis pv. citrumelo. The results further confirmed the atypical symptom–producing variants of X. axonopodis pv. citri in Taiwan belong to pathotype Xac‐A.  相似文献   

18.
Isolates of Colletotrichum acutatum, C. fragariae and C. gloeosporioides pathogenic to strawberry plants were examined by sequence analysis of the 5.8S‐ITS region. Phylogenetic relationships among isolates of Colletotrichum are, for the most part, congruent with the molecular groups established in earlier works. 5.8S‐ITS sequence analysis showed a high level of genetic divergence within C. acutatum. Isolates of this species clustered into two very distinct clusters with further subdivision. The divergences between C. fragariae and C. gloeosporioides were too low to distinguish them as separate species. On the basis of the sequence data, specific primers were designed both to identify isolates belonging to the genus Colletotrichum, and to distinguish isolates of the species C. acutatum. The specificity of these primers was validated by testing a wide range of strawberry isolates of Colletotrichum, non‐strawberry isolates of Colletotrichum and other fungi used as controls. Although the 5.8S‐ITS sequences were not polymorphic enough to allow the construction of C. gloeosporioides‐specific primers, specific PCR amplification followed by an MvnI digestion provides a tool to specifically identify strawberry isolates of C. gloeosporioides.  相似文献   

19.
Because Helicobacter pylori has a role in the pathogenesis of gastric cancer, chronic gastritis and peptic ulcer disease, detection of its viable form is very important. The objective of this study was to optimize a PCR method using ethidium monoazide (EMA) or propidium monoazide (PMA) for selective detection of viable H. pylori cells in mixed samples of viable and dead bacteria. Before conducting the real-time PCR using SodB primers of H. pylori, EMA or PMA was added to suspensions of viable and/or dead H. pylori cells at concentrations between 1 and 100 μM. PMA at a concentration of 50 μM induced the highest DNA loss in dead cells with little loss of genomic DNA in viable cells. In addition, selective detection of viable cells in the mixtures of viable and dead cells at various ratios was possible with the combined use of PMA and real-time PCR. In contrast, EMA penetrated the membranes of both viable and dead cells and induced degradation of their genomic DNA. The findings of this study suggest that PMA, but not EMA, can be used effectively to differentiate viable H. pylori from its dead form.  相似文献   

20.
Sewage sludge is the solid, organic material remaining after wastewater is treated and discharged from a wastewater treatment plant. Sludge is treated to stabilize the organic matter and reduce the amount of human pathogens. Once government regulations are met, including material quality standards (e.g., E. coli levels and heavy metal content) sludge is termed “biosolids”, which may be disposed of by land application according to regulations. Live-culture techniques have traditionally been used to enumerate select pathogens and/or indicator organisms to demonstrate compliance with regulatory requirements. However, these methods may result in underestimates of viable microorganisms due to several problems, including their inability to detect viable but non-culturable (VBNC) cells. Real-time quantitative polymerase chain reaction (qPCR) is currently under investigation as a fast, sensitive, and specific molecular tool for enumeration of pathogens in biosolids. Its main limitation is that it amplifies all target DNAs, including that from non-viable cells. This can be overcome by coupling qPCR with propidium monoazide (PMA), a microbial membrane-impermeant dye that binds to extracellular DNA and DNA in dead or membrane-compromised cells, inhibiting its amplification. PMA has successfully been used to monitor the presence of viable pathogens in several different matrices. In this review the use of PMA-qPCR is discussed as a suitable approach for viable microbial enumeration in biosolids. Recommendations for optimization of the method are made, with a focus on DNA extraction, dilution of sample turbidity, reagent concentration, and light exposure time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号