首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cui  Kai-Cheng  Liu  Min  Ke  Gui-Hua  Zhang  Xing-Yuan  Mu  Bo  Zhou  Min  Hu  Yang  Wen  Ying-Qiang 《Plant Cell, Tissue and Organ Culture》2021,146(3):621-633

As one of the most economically important fruit crops in the world, the grapevine (Vitis vinifera) suffers significant yield losses from various pathogens including powdery mildew caused by Erysiphe necator. In contrast, several wild Chinese grapevines, including Vitis pseudoreticulata accession Baihe-35-1, are highly resistant to powdery mildew pathogens. Here, we identified a grapevine gene CSN5 (COP9 signalosome complex subunit 5), designated VvCSN5, that was differentially expressed between the resistant ‘Baihe-35-1’ and susceptible ‘Thompson Seedless’ during powdery mildew isolate Erysiphe necator NAFU1 infection. Moreover, transient silencing of VvCSN5 in ‘Thompson Seedless’ leaves enhanced resistance to En NAFU1. This resistance manifested in cell wall callose deposition at attempted infection sites and hypersensitive response-like cell death of penetrated epidermal cells. Several defense-related marker genes (VvPR1, VvPR3, VvPAD4, and VvRBOHD) had higher basal expression levels in VvCSN5-silenced leaves. In addition, we found the structure and activity of CSN5 promoters in ‘Thompson Seedless’ and ‘Baihe-35-1’ were different, which may have been behind their different resistances to powdery mildew infection. Taken together, these results implied that grapevine CSN5 plays an important role in the response to powdery mildew infection.

  相似文献   

2.
3.
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome‐editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock‐down of TaEDR1 by virus‐induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off‐target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew‐induced cell death. Our study represents the successful generation of a potentially valuable trait using genome‐editing technology in wheat and provides germplasm for disease resistance breeding.  相似文献   

4.
  • In common root and crown rot (CRR), Bipolaris sorokiniana (Sace.) is one of the important in wheat, causing considerable yield losses globally. Sources of resistance can provide a feasible and effective method of control for plant disease management. However, knowledge on mechanisms of resistance is scarce.
  • We screened 33 wheat genotypes against B. sorokiniana under greenhouse and field conditions. In addition, real-time quantitative PCR (qPCR) analysis using ten novel candidate gene markers, Cre3, EDS1, LTP5, PGIP, PR-1, PIEP1, TLP, UGT, Stb6 and PFT, was conducted on leaves and roots, along with changes in activity of antioxidant enzymes, peroxidase, catalase, β-1,3-glucanase, and phenolic content for their involvement in disease impact mechanisms.
  • Lowest disease severity was in ‘Alvand’, followed by ‘Baharan’ and ‘Bam’ as resistant genotypes. Quantitative gene expression showed that, although the candidate defence genes were upregulated 1.24- to 3.5-fold in wheat roots and leaves inoculated with B. sorokiniana, they were highly regulated in resistant varieties ‘Alvand’, ‘Mehregan’ and ‘Bam’. Cre3, a resistance gene to cereal cyst nematode Heterodera filipjevi, was regulated in cultivars resistant to B. sorokiniana. Similar results were obtained for Stb6, a gene resistant to Septoria tritici blotch, EDS1 resistant to powdery mildew, Blumeria graminis, and the genes PR-1 and UGT resistant to leaf rust, Puccinia triticina. Antioxidant enzyme activity also showed the highest increases in resistant genotypes.
  • In conclusion, the T. aestivumB. sorokiniana interaction in resistant wheat cultivars uses defence-related genes and enzymes that protect wheat towards sustainable development. Further such studies will shed light on simultaneous resistance to other diseases in wheat cultivars.
  相似文献   

5.
6.
The Chinese winter wheat cultivar Zhoumai 22 is highly resistant to powdery mildew. The objectives of this study were to map a powdery mildew resistance gene in Zhoumai 22 using molecular markers and investigate its allelism with Pm13. A total of 278 F2 and 30 BC1 plants, and 143 F3 lines derived from the cross between resistant cultivar Zhoumai 22 and susceptible cultivar Chinese Spring were used for resistance gene tagging. The 137 F2 plants from the cross Zhoumai 22/2761-5 (Pm13) were employed for the allelic test of the resistance genes. Two hundred and ten simple sequence repeat (SSR) markers were used to test the two parents, and resistant and susceptible bulks. Subsequently, seven polymorphic markers were used for genotyping the F2 and F3 populations. The results indicated that the powdery mildew resistance in Zhoumai 22 was conferred by a single dominant gene, designated PmHNK tentatively, flanked by seven SSR markers Xgwm299, Xgwm108, Xbarc77, Xbarc84, Xwmc326, Xwmc291 and Xwmc687 on chromosome 3BL. The resistance gene was closely linked to Xwmc291 and Xgwm108, with genetic distances of 3.8 and 10.3 cM, respectively, and located on the chromosome bin 3BL-7-0.63-1.0 in the test with a set of deletion lines. Seedling tests with seven isolates of Blumeria graminis f. sp. tritici (Bgt) and allellic test indicated that PmHNK is different from Pm13, and Pm41 seems also to be different from PmHNK due to its origin from T. dicoccoides and molecular evidence. These results indicate that PmHNK is likely to be a novel powdery mildew resistance gene in wheat.  相似文献   

7.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F2 progenies and F6 recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F2 mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F6 RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F2 population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.  相似文献   

8.
The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS‐containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8‐mediated powdery mildew resistance in lines containing Pm8 in a transient single‐cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post‐translational mechanism is involved in suppression of Pm8. Co‐expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co‐immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding.  相似文献   

9.
This paper reports the characterization of the powdery mildew resistance homologous genes family of Triticum aestivum. Using degenerate primer pair for wheat resistance genes, we have cloned seven 3′ truncated powdery mildew resistance gene homologous fragments Tpc5a, Tp25a, Tp25b, Tp3a5a, Tp3a5b, Tp4b5a and Tp4b5b. These fragments were sequenced. The deduced amino acid sequences showed that six of them have premature stop codons. All these sequences had a very high level of similarity to known Pm resistance genes such as Pm3a, Pm3b, Pm3d and pm3f in hexaploid wheat. By ignoring the stop codons in the sequences, their deduced protein sequences were of coiled-coil (CC)-nucleotide binding site (NBS)-leucine repeat rich (LRR) structure. These results suggest that there are many powdery mildew resistance gene analogues in both resistant and susceptible wheat. Among them, small insertion/deletion events and point mutations can result in the diversity of wheat Pm resistance homologous genes.  相似文献   

10.
Powdery mildew significantly affects grain yield and end-use quality of winter wheat in the southern Great Plains. Employing resistance resources in locally adapted cultivars is the most effective means to control powdery mildew. Two types of powdery mildew resistance exist in wheat cultivars, i.e., qualitative and quantitative. Qualitative resistance is controlled by major genes, is race-specific, is not durable, and is effective in seedlings and in adult plants. Quantitative resistance is controlled by minor genes, is non-race-specific, is durable, and is predominantly effective in adult plants. In this study, we found that the segregation of powdery mildew resistance in a population of recombinant inbred lines developed from a cross between the susceptible cultivar Jagger and the resistant cultivar 2174 was controlled by a major QTL on the short arm of chromosome 1A and modified by four minor QTLs on chromosomes 1B, 3B, 4A, and 6D. The major QTL was mapped to the genomic region where the Pm3 gene resides. Using specific PCR markers for seven Pm3 alleles, 2174 was found to carry the Pm3a allele. Pm3a explained 61% of the total phenotypic variation in disease reaction observed among seedlings inoculated in the greenhouse and adult plants grown in the field and subjected to natural disease pressure. The resistant Pm3a allele was present among 4 of 31 cultivars currently being produced in the southern Great Plains. The genetic effects of several minor loci varied with different developmental stages and environments. Molecular markers associated with these genetic loci would facilitate incorporating genetic resistance to powdery mildew into improved winter wheat cultivars.  相似文献   

11.
A powdery mildew resistance gene from Triticum urartu Tum. accession UR206 was successfully transferred into hexaploid wheat (Triticum aestivum L.) through crossing and backcrossing. The F1 plants, which had 28 chromosomes and an average of 5.32 bivalents and 17.36 univalents in meiotic pollen mother cells (PMC), were obtained through embryos rescued owing to shriveling of endosperm in hybrid seed of cross Chinese Spring (CS) × UR206. Hybrid seeds were produced through backcrossing F1 with common wheat parents. The derivative lines had normal chromosome numbers and powdery mildew resistance similar to the donor UR206, indicating that the powdery mildew resistance gene originating from T. urartu accession UR206 was successfully transferred and expressed in a hexaploid wheat background. Genetic analysis indicated that a single dominant gene controlled the powdery mildew resistance at the seedling stage. To map and tag the powdery mildew resistance gene, 143 F2 individuals derived from a cross UR206 × UR203 were used to construct a linkage map. The resistant gene was mapped on the chromosome 7AL based on the mapped microsatellite makers. The map spanned 52.1 cM and the order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 7AL. The resistance gene was flanked by the microsatellite loci Xwmc273 and Xpsp3003, with the genetic distances of 2.2 cM and 3.8 cM, respectively. On the basis of the origin and chromosomal location of the gene, it was temporarily designated PmU.  相似文献   

12.
A single nucleotide polymorphism in the wheat powdery mildew (Blumeria graminis f. sp. tritici) cytochrome b gene is responsible for resistance to inhibitors of the quinol outer binding site of the cytochrome bc1 complex (QoI) fungicides. Analysis of a partial sequence of the cytochrome b gene from field isolates resistant and sensitive to QoI fungicides revealed the same point mutation in barley powdery mildew (B. graminis f. sp. hordei). Analysis of 118 and 40 barley powdery mildew isolates using a cleaved amplified polymorphic sequence assay and denaturing high performance liquid chromatography, respectively, confirmed that this single nucleotide polymorphism also confers resistance to QoI fungicides in barley powdery mildew.  相似文献   

13.
Quantitative powdery mildew resistance in compatible host-pathogen-combinations was measured by the number of pastules/cm2 leaf area. Spring barley cultivar ‘Proctor’ was significantly less infected than ‘Golden Promise”. Using these two cultivars (having no effective major resistance gene) as controls, MO- and AR-resistant cultivars were inoculated with virulent mildew isolates. ‘Mona”, ‘Grit’ and ‘Nudinka’ had a higher or, at least, the same level of quantitative resistance as ‘Proctor”. None of the remaining cultivars showed the high susceptibility expressed by ‘Golden Promise”. Ranking of host genotypes was nearly constant while that of mildew isolates varied considerably. Only a small portion of the observed variance was due to interaction between host cultivars and pathogen isolates. ‘Triesdorfer Diva’ gave a resistant infection type after inoculation with different AR-virulent isolates, indicating that this cultivar has major resistance other than that conditioned by gene Ml-a12.  相似文献   

14.
15.
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt‐resistant or Bgt‐tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus‐induced gene silencing (VIGS) induces the up‐regulation of defence responses in wheat. These TaBON1‐ or TaBON3‐silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up‐regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat.  相似文献   

16.
Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt). Pm21 is an effective broad-spectrum powdery mildew resistance gene, which shows a considerable promise in wheat breeding. We report here a proteomic approach to investigate the resistance response proteins after fungal infection and emphasize the resistance changes induced by Pm21. Two wheat (Triticum aestivum L.) near-isogenic lines (NILs), recurrent parent ‘Bainong,’ which is susceptible to powdery mildew, and its near-isogenic line ‘W2132’ carrying resistance gene Pm21) were used to investigate some changes in their proteomes after being infected. Proteins were extracted from the leaves sampled in 48 h after inoculation, separated by two-dimensional electrophoresis, and stained with Coomassie brilliant blue. Among these proteins, a total of 56 spots differentially expressed after Bgt infection were detected. Sixteen proteins, identified by MALDI-TOF-MS, exhibited more than a 1.5-fold increase upon fungal infection. Unfortunately, three spots were not identified successfully. The predicted functions of identified proteins were related to energy metabolism and defensive responses; they were involved in many physiological resistance responses, including enhancing energy metabolism, proteins synthesis and stabilization, antioxidant reactions, cell-wall reinforcement, and lignification. Interestingly that the expression of two proteins related to the cell-wall reinforcement was enhanced in the resistant line and one protein related to photosynthesis was lost in a susceptible line. By transmission electronic microscopy, the corresponding physiological characteristics were also observed. These results provide us with the information to further reveal the resistance mechanism of Pm21 action and comprehensively investigate the physiological response to powdery mildew at the protein level.  相似文献   

17.
Segregation analysis of resistance to powdery mildew in a F2 progeny from the cross Chinese Spring (CS) × TA2682c revealed the inheritance of a dominant and a recessive powdery mildew resistance gene. Selfing of susceptible F2 individuals allowed the establishment of a mapping population segregating exclusively for the recessive resistance gene. The extracted resistant derivative showing full resistance to each of 11 wheat powdery mildew isolates was designated RD30. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous susceptible and resistant phenotypes revealed an AFLP marker that was associated with the recessive resistance gene in repulsion phase. Following the assignment of this AFLP marker to wheat chromosome 7A by means of CS nullitetrasomics, an inspection of simple sequence repeat (SSR) loci evenly spaced along chromosome 7A showed that the recessive resistance gene maps to the distal region of chromosome 7AL. On the basis of its close linkage to the Pm1 locus, as inferred from connecting partial genetic maps of 7AL of populations CS × TA2682c and CS × Virest (Pm1e), and its unique disease response pattern, the recessive resistance gene in RD30 was considered to be novel and tentatively designated mlRD30.Communicated by C. Möllers  相似文献   

18.
Distribution of assimilates in cultivars of spring barley with different resistance against powdery mildew (Erysiphe graminis f. sp. hordei) Transport and distribution of radioactive labelled assimilates in spring barley cultivars with different degrees of resistance to powdery mildew were studied after 14CO2-treatment of single leaves. Plants of the cultivars ‘Amsel’ (susceptible), ‘Asse’ (adult plant resistant), and ‘Rupee’ (resistant) were analyzed at the vegetative growth stage (5. leaf unfolded) and the generative growth stage (anthesis). At the vegetative growth stage the assimilate export from the mildew inoculated 5. leaf of ‘Amsel’ and ‘Rupee’ is decreased; in ‘Asse’, there is no considerable change of assimilate distribution due to infection. At the generative growth stage the assimilate export from the infected flag leaf of ‘Amsel’ is reduced when the fungus, is sporulating. In the cultivar ‘Asse’ the assimilates are bound at the infection site until the seventh day after inoculation, then the transport of assimilates to the ear is increased. In ‘Rupee’ mildew inoculation causes an enhanced assimilate transport to the ear. The changes in assimilate distribution due to mildew inoculation are discussed with respect to the different types of host-parasite-interactions and the source-sink-activities in the different cultivars.  相似文献   

19.
Wheat powdery mildew is a severe foliar disease and causes significant yield losses in epidemic years. Breeding and using resistant cultivars is the most widely employed strategy to curb this disease. To identify and transfer powdery mildew resistance genes in wild emmer wheat accession TA1410 into common wheat, a resistant F3 line derived from the cross of TA1410 × durum wheat line Zhongyin1320 was crossed with common wheat cultivar Yangmai158. The homozygous resistant BC5F2 lines derived from the backcross with Yangmai158 exhibited susceptibility at seedling stage and conferred increasing resistance when the plants were closer to heading stage. In two segregating BC5F3 families investigated at heading stage, the segregation of the resistance fit a 3:1 ratio, suggesting that a single dominant gene controls the resistance. This resistance gene, designated HSM1, was mapped to the 0.6-cM Xmag5825.1–Xgwm344 interval on chromosome 7AL and co-segregated with Xrga-C3 and Xrga-C6. A mapping position comparison with other powdery mildew resistance genes on this chromosome suggested that HSM1 belongs to the Pm1 resistance gene cluster. HSM1 is a useful candidate gene for resistance breeding, particularly in winter-wheat growing areas.  相似文献   

20.
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F2 segregating population and F2:3 families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63–1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号