首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of 174 F2 plants was made originating from a cross between S. lycopersicum cv. Moneymaker and S. habrochaites LYC4. The population was genotyped and tested for susceptibility to grey mold using a stem bioassay. Rbcq1, a QTL reducing lesion growth (LG) and Rbcq2, a QTL reducing disease incidence (DI) were identified. Rbcq1 is located on Chromosome 1 and explained 12% of the total phenotypic variation while Rbcq2 is located on Chromosome 2 and explained 15% of the total phenotypic variation. Both QTL effects were confirmed by assessing disease resistance in two BC2S1 progenies segregating for either of the two QTLs. One additional QTL, Rbcq4 on Chromosome 4 reducing DI, was identified in one of the BC2S1 progenies. F2 individuals, homozygous for the Rbcq2 and Rbcq4 alleles of S. habrochaites showed a reduction of DI by 48%. QTLs from S. habrochaites LYC4 offer good perspectives for breeding B. cinerea resistant tomato cultivars. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
Resistance of different cultivated and wild tomato plants (Lycopersicon spp.) to Botrytis cinerea Pers. 20 provenances of different cultivated and wild tomato plants (Lycopersicon spp.) were screened for resistance to Botrytis cinerea Pers. using an in vitro-leaf necrosis test. The Botrytis resistance decreased with increasing age of the leaves corresponding to their insertion height (relative youth resistance respectively senescence susceptibility). The 6 B. cinerea-isolates used for inoculation differed significantly in virulence. With increasing inoculum age a virulence reduction of the various B. cinerea-isolates occurred. Within the investigated test plant collection 2 wild species –L. columbianum and L. hirsutum– proved to be resistant in each stage of development to all B. cinerea-isolates and additionally showed field resistance.  相似文献   

3.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

4.
Strigolactones are multifunctional molecules involved in several processes outside and within the plant. As signalling molecules in the rhizosphere, they favour the establishment of arbuscular mycorrhizal symbiosis, but they also act as host detection cues for root parasitic plants. As phytohormones, they are involved in the regulation of plant architecture, adventitious rooting, secondary growth and reproductive development, and novel roles are emerging continuously. In the present study, the possible involvement of strigolactones in plant defence responses was investigated. For this purpose, the resistance/susceptibility of the strigolactone‐deficient tomato mutant Slccd8 against the foliar fungal pathogens Botrytis cinerea and Alternaria alternata was assessed. Slccd8 was more susceptible to both pathogens, pointing to a new role for strigolactones in plant defence. A reduction in the content of the defence‐related hormones jasmonic acid, salicylic acid and abscisic acid was detected by high‐performance liquid chromatography coupled to tandem mass spectrometry in the Slccd8 mutant, suggesting that hormone homeostasis is altered in the mutant. Moreover, the expression level of the jasmonate‐dependent gene PinII, involved in the resistance of tomato to B. cinerea, was lower than in the corresponding wild‐type. We propose here that strigolactones play a role in the regulation of plant defences through their interaction with other defence‐related hormones, especially with the jasmonic acid signalling pathway.  相似文献   

5.
The aim of this study was to investigate the effect of tissue nitrogen concentration, as a consequence of nitrogen supply rate, on the susceptibility of tomato plants to three pathogens. We varied tissue N concentration by supplying N at different rates by adding nitrate in different, exponentially increasing amounts to the nutrient solution on which the tomato plants were grown. Separate experiments were carried out to test susceptibility of tomato plants to the bacterial speck-causing Pseudomonas syringae pv tomato, to the wilt agent Fusarium oxysporum f.sp. lycopersici and to tomato powdery mildew caused by Oidium lycopersicum. The effect of tissue N concentration appeared to be highly pathogen-dependent: there was no effect on susceptibility to F. oxysporum, but susceptibility to P. syringae and O. lycopersicum increased significantly with increasing N concentration. We have previously demonstrated the opposite for susceptibility to Botrytis cinerea: decreasing susceptibility with increasing N concentration. The apparent contradictory effects are discussed in relation to the effect of N supply on both the nutritional value of the plant tissue to the pathogen and on the concentration of resistance-related compounds. We conclude that the effect of changing both characteristics on disease susceptibility is highly pathogen-specific and is probably dependent on differences in resource requirements of the pathogen or the sensitivity of the pathogen to plant resistance reactions or on both these factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
7.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

8.
9.
10.
Functional analysis of an extracellular catalase of Botrytis cinerea   总被引:3,自引:0,他引:3  
There is evidence that the necrotrophic fungal pathogen Botrytis cinerea is exposed to oxidative processes within plant tissues. The pathogen itself also generates active oxygen species and H2O2 as pathogenicity factors. Our aim was to study how the pathogen may defend itself against cellular damage caused by the accumulation of H2O2 and the role of an extracellular catalase in its detoxification during the infection of tomato and bean plants by B. cinerea. Chloronaphthol staining followed by light microscopy showed that H2O2 accumulates in the infection zone in tomato and bean leaves. An extracellular catalase gene (denominated Bccat2) was cloned from B. cinerea. Exposure of mycelium to H2O2 in liquid culture resulted in increased Bccat2 mRNA levels in a concentration-dependent manner. Bccat2 mRNA was detected at early stages of tomato leaf infection, suggesting that B. cinerea experiences oxidative stress. Bccat2-deficient mutants were generated by transformation-mediated gene disruption. Mutants were more sensitive then the wild-type strain to H2O2in vitro, but they partly compensated for the absence of BcCAT2 by activating other protective mechanisms in the presence of H2O2. Bccat2-deficient mutants did not display a consistent reduction of virulence on bean and tomato leaves. Cerium chloride staining of infected leaf tissue for ultrastructural studies showed that Bccat2-deficient mutants were exposed to H2O2 comparably to the wild-type. The results suggest that B. cinerea is a robust pathogen adapted to growing in hostile oxidizing environments in host tissues.  相似文献   

11.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

12.
Alpaslan  M.  Gunes  A. 《Plant and Soil》2001,236(1):123-128
A greenhouse study was conducted in order to determine interactive effects of NaCl salinity and B on the growth, sodium (Na), chloride (Cl), boron (B), potassium (K) concentrations and membrane permeability of salt resistant Tomato (Lycopersicon esculentum L. cv. Lale F1) and salt sensitive cucumber (Cucumis sativus L. cv. Santana F1) plants. Plants were grown in a factorial combination of NaCl (0 and 30 mM for cucumber and 0 and 40 mM for tomato) and B (0, 5, 10 and 20 mg kg–1 soil). Boron toxicity symptoms appeared at 5 mg kg–1 B treatments in both plants. Salinity caused an increase in leaf injury due to B toxicity, but it was more severe in cucumber. Dry weights of the plants decreased with the increasing levels of applied B in nonsaline conditions, but the decrease in dry weights due to B toxicity was more pronounced in saline conditions especially in cucumber. Salinity × B interaction on the concentration of B in both plants was found significant. However, increase in B concentrations of tomato decreased under saline conditions when compared to nonsaline conditions. Contrary to this, B concentration of cucumber increased as a result of increasing levels of applied B and salinity. Salinity increased Na and Cl concentrations of both plants.Potassium concentration of tomato was not affected by salinity and B treatments, but K concentration of cucumber was decreased by salinity. Membrane permeability of the plants was increased by salinity while toxic levels of B had no effect on membrane permeability in nonsaline conditions. Membrane permeability was significantly increased in the presence of salinity by the increasing levels of applied B.  相似文献   

13.
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence‐related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10‐day‐old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60‐fold increase in JA, a 30‐fold increase in SA and a hypersensitive‐like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10‐day‐old hosts, but both did in 20‐day‐old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid‐insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore‐ and pathogen‐induced responses.  相似文献   

14.
Hydrogen peroxide generation rates of uninfected and infected leaves of two tomato (Lycopersicon esculentum) cultivars showing differential susceptibility to Botrytis cinerea were determined. The superoxide anion, hydroxyl radical, ascorbate contents and changes in NADH peroxidase, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities in the apoplast fraction were analysed. Infected leaves had an increased hydrogen peroxide level. It was greater and generally occurred earlier in plants of the less susceptible cv. Perkoz than in those of the more susceptible cv. Corindo. Induction of nitrotetrazolium blue reducing activity and SOD levels in apoplast were higher in cv. Perkoz 24 h after inoculation. In the controls, NADH peroxidase activity in apoplast was higher in the more susceptible cv. Corindo, but after infection it increased faster and to a higher level in the less susceptible cv. Perkoz. NADH oxidation was inhibited by only 15% by a specific inhibitor DPI (diphenylene‐iodonium) but was completely inhibited by KCN and NaN3. Similar increases in APX activity after 48 h and a small increase in catalase activities were observed in both cultivars soon after infection. These results indicate that resistance of tomato plants to infection by the necrotrophic fungus B. cinerea may result from early stimulation of hydrogen peroxide and superoxide radical generations by NADH peroxidase and SOD in apoplastic space, and they confirm the important role of their enhanced production in apoplastic spaces of plants.  相似文献   

15.
Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance. Targeted and untargeted metabolomics and gene expression analysis in plants treated with purified OGs revealed that local responses were transient, while distal responses were stronger and more sustained. Remarkably, changes were more conspicuous in roots, even upon foliar application of the OGs. The treatments differentially activated the synthesis of defence‐related hormones and secondary metabolites including flavonoids, alkaloids and lignans, some of them exclusively synthetized in roots. Finally, the biological relevance of the systemic defence responses activated upon OG perception was confirmed, as the treatment induced systemic resistance to Botrytis cinerea. Overall, this study shows the differential regulation of tomato defences upon OGs perception in roots and shoots and reveals the key role of roots in the coordination of the plant responses to damage sensing.  相似文献   

16.
Abstract

Lanthanum is one of the most abundant elements in rare earths enriched fertilizers and is supposed to be one of the main responsible of the effects of such fertilizers on crops. In this work, the effect of lanthanum nitrate on H2O2 production, lipid peroxidation, ascorbate and glutathione content, and on the activity of cytosolic ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase in Lycopersicon esculentum L. cv. Marmande during drought stress was evaluated. The results confirmed that treatments of tomato plants with lanthanum nitrate affect the antioxidant cellular defences and that lanthanum toxicity is dependent on the way of treatment. The stimulation of antioxidant systems did not induce any improvement in drought stress responses in tomato but seemed to be only a consequence of the unbalance in cell metabolism due to the treatment with lanthanum nitrate.  相似文献   

17.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

18.
Elevation in atmospheric CO2 concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO2 on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO2 would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO2 decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO2 also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO2 increased plant height and aboveground biomass. Additionally, elevated CO2 increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO2 increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO2 reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus‐infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO2 makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO2 conditions.  相似文献   

19.
由灰葡萄孢(Botrytis cinerea)引起的灰霉病是番茄生产中最重要的病害之一,当前使用的杀菌剂因药物残留、病原菌抗药性及食品安全等原因逐渐受到限制。因此,利用拮抗微生物的生物防治逐渐成为灰霉病防控的有效策略。【目的】从番茄植株体内筛选具有抗病促生特性内生菌株并对其生防潜力进行评估,为开发番茄灰霉病生物防治新策略提供理论依据。【方法】采用组织分离法在番茄植株不同部位分离出内生细菌、真菌,结合16SrRNA和ITS序列分析,对候选菌株进行初步鉴定;通过菌株对峙培养、果实离体接种筛选对灰葡萄孢具有拮抗活性的内生菌;进一步测定菌株分泌生长素、嗜铁素的能力及其对拟南芥和番茄幼苗生长的促生特性。【结果】从番茄植株不同部位共分离出72株内生细菌和31株内生真菌,通过平板对峙法筛选出1株对多种病原菌具有较好抑菌活性的内生细菌FQ-G3,分子鉴定为Bacillus velezensis。FQ-G3对灰葡萄孢抑菌率达80.93%,并显著抑制灰葡萄孢在番茄果实上的扩展。该菌株能够分泌生长素、蛋白酶和嗜铁素,且对拟南芥、番茄幼苗具有明显的促生效果。【结论】本研究表明分离自番茄植株的内生菌FQ-G3具...  相似文献   

20.
Starck  Z.  Niemyska  B.  Bogdan  J.  Akour Tawalbeh  R. N. 《Plant and Soil》2000,226(1):99-106
The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented PN inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F v/F m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation than as an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F v/F mratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号