共查询到20条相似文献,搜索用时 0 毫秒
1.
The small-island effect (SIE) has become a widespread pattern in island biogeography and biodiversity research. However, in most previous studies only area is used for the detection of the SIE, while other causal factors such as habitat diversity is rarely considered. Therefore, the role of habitat diversity in generating SIEs is poorly known. Here, we compiled 86 global datasets that included the variables of habitat diversity, area and species richness to systematically investigate the prevalence and underlying factors determining the role of habitat diversity in generating SIEs. For each dataset, we used both path analysis and breakpoint regressions to identify the existence of an SIE. We collected a number of system characteristics and employed logistic regression models and an information–theoretic approach to determine which combination of variables was important in determining the role of habitat diversity in generating SIEs. Among the 61 datasets with adequate fits, habitat diversity was found to influence the detection of SIEs in 32 cases (52.5%) when using path analysis. By contrast, SIEs were detected in 26 of 61 cases (42.6%) using breakpoint regressions. Model selection and model-averaged parameter estimates showed that Number of sites, Habitat range and Species range were three key variables that determined the role of habitat diversity in generating SIEs. However, Area range, Taxon group and Site type received considerably less support. Our study demonstrates that the effect of habitat diversity on generating SIEs is quite prevalent. The inclusion of habitat diversity is important because it provides a causal factor for the detection of SIEs. We conclude that for a better understanding of the causes of SIEs, habitat diversity should be included in future studies. 相似文献
2.
De Gao;Yanping Wang; 《Journal of Biogeography》2024,51(3):439-453
The small-island effect (SIE) describes an anomalous feature of the species–area relationship (SAR) on smaller compared to larger islands. However, previous studies on SIEs mainly focused on taxonomic diversity and overlooked phylogenetic and functional diversity. In this study, we explored SIEs in three dimensions of diversity. We expect to see the non-linear thresholds in the effect of area on three dimensions of diversity as well as on community structures, because the dominant assembly processes vary across spatial scales. 相似文献
3.
4.
Zsófia Herceg-Szórádi László Demeter Anna Mária Csergő 《Diversity & distributions》2023,29(5):629-640
Aim
(i) To determine whether area and connectivity of temporary ponds can predict plant species diversity, and the diversity and abundance of different plant life histories; (ii) To explore whether pond connectivity with the river prior to river regulation predicts better plant diversity patterns than current pond connectivity, suggestive of possible effects of connectivity loss.Location
Eastern Carpathian Mountains, Romania, Europe.Methods
We fitted linear and generalized linear models (LM and GLM) to examine whether pond area and current distance from the Olt River predict plant species richness, Shannon diversity and relative cover of different social behaviour types and overall plant species richness and Shannon diversity. Using historical maps, we measured pond distance from the river ca. 60 years before the Olt River was regulated, and we refitted the LM and GLM models using pond area and past distance from the river as independent variables.Results
Total plant species richness increased with pond area, and it decreased with the distance from the river, but total plant Shannon diversity index was affected, positively, only by pond area. The strength of responses to pond area and connectivity of species richness, Shannon diversity and relative cover varied across the different social behaviour types. Past and current distances between ponds and riverbeds had similar effects on plant diversity, with some evidence for stronger effect of the present connectivity on specialist species Shannon diversity and a weaker effect on disturbance tolerants, generalists and competitors.Main Conclusions
Pond area and connectivity with the landscape are important predictors of the diversity of plant life history strategies, and therefore, useful tools in pond conservation. Consistent species richness and Shannon diversity responses of wetland specialists to pond area and connectivity make this life history type well suited for monitoring pond condition. 相似文献5.
Thomas J. Matthews Joseph P. Wayman Robert J. Whittaker Pedro Cardoso Julian P. Hume Ferran Sayol Konstantinos Proios Thomas E. Martin Benjamin Baiser Paulo A. V. Borges Yasuhiro Kubota Luiz dos Anjos Joseph A. Tobias Filipa C. Soares Xingfeng Si Ping Ding Chase D. Mendenhall Yong Chee Keita Sin Frank E. Rheindt Kostas A. Triantis François Guilhaumon David M. Watson Lluís Brotons Corrado Battisti Osanna Chu François Rigal 《Ecology letters》2023,26(6):965-982
Research on island species–area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity–area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have ‘re-calibrated’ the IDARs such that they resemble the historic period prior to recent extinctions. 相似文献
6.
This study attempts to understand the biogeographic history of the Western Ghats forests by investigating decoupling between phylogenetic and taxonomic diversity. We specifically test whether the deciduous forests have been recently established, whether the southern region was a refuge, and whether the deciduous and evergreen forest species have disparate evolutionary histories. We used species composition data from 23 forest types along the Western Ghats for all woody angiosperms above 10‐cm diameter at breast height. Forests were broadly grouped as either evergreen or deciduous. Mean phylogenetic distances corrected for species richness and mean phylogenetic beta diversity corrected for shared species were assessed using z‐scores from null distributions. Null distributions were generated by randomizing the species relationships on the phylogeny. We found that all evergreen forests showed a greater phylogenetic diversity as compared with null expectations. Deciduous forests showed the inverse pattern. Within the evergreen belt, there was a decreasing phylogenetic diversity from south to north, as predicted by the southern refuge hypothesis. The phylogenetic beta diversity across evergreen–deciduous forests was lesser than the null expectation, whereas it was much higher across forests within the evergreen belt. This study provides the first phylogenetic evidence for the antiquity of evergreen forests as well as the southern refuge hypothesis in the Western Ghats. The deciduous forests species have shared evolutionary histories with the evergreen forest species, suggesting multiple shifts between evergreen and deciduous states through the lineages. Conversely, the evergreen species exhibited a disparate evolutionary history across these forests, possibly owing to sharper ecological or climatic gradients. 相似文献
7.
Aim We examined phytogeographical patterns of West Indian orchids, and related island area and maximum elevation with orchid species richness and endemism. We expected strong species–area relationships, but that these would differ between low and montane island groups. In so far as maximum island elevation is a surrogate for habitat diversity, we anticipated a strong relationship with maximum elevation and both species richness and endemism for montane islands. Location The West Indies. Methods Our data included 49 islands and 728 species. Islands were classified as either montane (≥ 300 m elevation) or low (< 300 m). Linear and multivariate regression analyses were run to detect relationships between either area or maximum island elevation and species richness or the number of island endemic species. Results For all 49 islands, the species–area relationship was strong, producing a z‐value of 0.47 (slope of the regression line) and explaining 46% of the variation. For 18 relatively homogeneous, low islands we found a non‐significant slope of z = −0.01 that explained only 0.1% of the variation. The 31 montane islands had a highly significant species–area relationship, with z = 0.49 and accounting for 65% of the variation. Species numbers were also strongly related to maximum island elevation. For all islands < 750 km2, we found a small‐island effect, which reduced the species–area relationship to a non‐significant z = 0.16, with only 5% of the variation explained by the model. Species–area relationships for montane islands of at least 750 km2 were strong and significant, but maximum elevation was the best predictor of species richness and accounted for 79% of the variation. The frequency of single‐island endemics was high (42%) but nearly all occurred on just nine montane islands (300 species). The taxonomic distribution of endemics was also skewed, suggesting that seed dispersability, while remarkable in some taxa, is very limited in others. Montane island endemics showed strong species–area and species–elevation relationships. Main conclusions Area and elevation are good predictors of orchid species diversity and endemism in the West Indies, but these associations are driven by the extraordinarily strong relationships of large, montane islands. The species richness of low islands showed no significant relationship with either variable. A small‐island effect exists, but the montane islands had a significant relationship between species diversity and maximum elevation. Thus, patterns of Caribbean orchid diversity are dependent on an interplay between area and topographic diversity. 相似文献
8.
Fábio Z. Farneda Carlos E. V. Grelle Ricardo Rocha Diogo F. Ferreira Adrià López-Baucells Christoph F. J. Meyer 《Ecography》2020,43(1):97-106
We investigate how variation in patch area and forest cover quantified for three different spatial scales (buffer size of 500, 1500 and 3000 m radius) affects species richness and functional diversity of bat assemblages in two ecosystems differing in fragment–matrix contrast: a landbridge island system in Panama and a countryside ecosystem in the Brazilian Amazon. Bats were sampled on 11 islands and the adjacent mainland in Panama, and in eight forest fragments and nearby continuous forest in Brazil. Species–area relationships (SAR) were assessed based on Chao1 species richness estimates, and functional diversity–area relationships (FAR) were quantified using Chao1 functional diversity estimates measured as the total branch length of a trait dendrogram. FARs were calculated using three trait sets: considering five species functional traits (FARALL), and trait subsets reflecting ‘diet breadth’ (FARDIET) and ‘dispersal ability’ (FARDISPERSAL). We found that in both study systems, FARALL was less sensitive to habitat loss than SAR, in the sense that an equal reduction in habitat loss led to a disproportionately smaller loss of functional diversity compared to species richness. However, the inhospitable and static aquatic matrix in the island ecosystem resulted in more pronounced species loss with increasing loss of habitat compared to the countryside ecosystem. Moreover, while we found a significant FARDISPERSAL for the island ecosystem in relation to forest cover within 500 m landscape buffers, FARDIET and FARDISPERSAL were not significant for the countryside ecosystem. Our findings highlight that species richness and functional diversity in island and countryside ecosystems scale fundamentally differently with habitat loss, and suggest that key bat ecological functions, such as pollination, seed dispersal and arthropod suppression, may be maintained in fragments despite a reduction in species richness. Our study reinforces the importance of increasing habitat availability for decreasing the chances of losing species richness in smaller fragments. 相似文献
9.
K. A. Triantis K. Vardinoyannis E. P. Tsolaki I. Botsaris K. Lika M. Mylonas 《Journal of Biogeography》2006,33(5):914-923
Aim To propose a new approach to the small island effect (SIE) and a simple mathematical procedure for the estimation of its upper limit. The main feature of the SIE is that below an upper size threshold an increase of species number with increase of area in small islands is not observed. Location Species richness patterns from different taxa and insular systems are analysed. Methods Sixteen different data sets from 12 studies are analysed. Path analysis was used for the estimation of the upper limit of the SIE. We studied each data set in order to detect whether there was a certain island size under which the direct effects of area were eliminated. This detection was carried out through the sequential exclusion of islands from the largest to the smallest. For the cases where an SIE was detected, a log‐log plot of species number against area is presented. The relationships between habitat diversity, species number and area are studied within the limits of the SIE. In previous studies only area was used for the detection of the SIE, whereas we also encompass habitat diversity, a parameter with well documented influence on species richness, especially at small scales. Results An SIE was detected in six out of the 16 studied cases. The upper limit of the SIE varies, depending on the characteristics of the taxon and the archipelago under study. In general, the values of the upper limit of the SIE calculated according to the approach undertaken in our study differ from the values calculated in previous studies. Main conclusions Although the classical species–area models have been used to estimate the upper limit of the SIE, we propose that the detection of this phenomenon should be undertaken independently from the species–area relationship, so that the net effects of area are calculated excluding the surrogate action of area on other variables, such as environmental heterogeneity. The SIE appears when and where area ceases to influence species richness directly. There are two distinct SIE patterns: (1) the classical SIE where both the direct and indirect effects of area are eliminated and (2) the cryptic SIE where area affects species richness indirectly. Our approach offers the opportunity of studying the different factors influencing biodiversity on small scales more accurately. The SIE cannot be considered a general pattern with fixed behaviour that can be described by the same model for different island groups and taxa. The SIE should be recognized as a genuine but idiosyncratic phenomenon. 相似文献
10.
本文在排除了“平衡假说”中的“岛屿效应”的情况下,估算了世界部分国家兽类,鸟类,爬行类和两栖类的物种-面积,物种-纬度及物种-面积-纬度关系式中的参数。研究发现,大陆连续栖息地性的z值并不比岛屿或栖息地“岛屿”性的z值小,z值与面积样本大小和范围有关。栖息地异质性对z值的大小也起着很重要的作用。本文建立了全球脊推动物物种-面积-纬度相关模型,即Logs=b_o+b_1·LogA+b_2·L,总复合相关系数达0.9028(p<0.01),可用于预测或评估全球脊推动物种数分布或由于栖息地破坏后物种数消失的情况。 相似文献
11.
于2012-2015年调查了温州沿海20个小型无居民海岛的植物组成,共记录到维管束植物366种,隶属于95科244属,其中草本植物226种木本植物140种。拟合了5个种-面积关系模型,采用赤池信息量AIC对模型进行选择,发现种-面积-生境类型关系模型SAH_nR权重系数最大,为40.26%,两种断点回归种-面积关系模型BR-SAR权重系数分别仅为6.94%和0.43%,表明基于这20个海岛拟合的种-面积关系不存在小岛屿效应。岛屿植物物种丰富度主要受面积A影响,离大陆距离,I_m对丰富度无显著作用;偏相关分析表明除A外,周长/面积比PAR和岛屿生境多样性指数H_d显著影响了植物丰富度,其逐步回归方程分别为:植物总丰富度S=76.714+1.696A-0.046PAR,R~2=0.839;木本植物丰富度S_(-woody)=6.525+0.455A+24.544H_d,R~2=0.697;草本植物丰富度S_(-herbaceous)=66.899+1.285A-0.04PAR-23.434H_d,R~2=0.865。偏最小二乘回归PLS分析中岛屿空间特征参数对岛屿物种相似性指数重要性排序为:I_m(0.61)I_i(0.56)PAR(0.49)A(0.20)岸线长度Per(0.14)生境类型H(0.072)岛屿高程E(0.065)岛屿形状指数SI(0.05)。由此可见,近岸的小型海岛植物丰富度并不总是由岛屿面积来决定;隔离度对岛屿植物β多样性影响较大。 相似文献
12.
13.
14.
A positive relationship between species richness and island size is thought to emerge from an equilibrium between immigration and extinction rates, but the influence of species diversification on the form of this relationship is poorly understood. Here, we show that within‐lake adaptive radiation strongly modifies the species‐area relationship for African cichlid fishes. The total number of species derived from in situ speciation increases with lake size, resulting in faunas orders of magnitude higher in species richness than faunas assembled by immigration alone. Multivariate models provide evidence for added influence of lake depth on the species‐area relationship. Diversity of clades representing within‐lake radiations show responses to lake area, depth and energy consistent with limitation by these factors, suggesting that ecological factors influence the species richness of radiating clades within these ecosystems. Together, these processes produce lake fish faunas with highly variable composition, but with diversities that are well predicted by environmental variables. 相似文献
15.
Ramiro Martín-Devasa;Aurélien Jamoneau;Sophia I. Passy;Juliette Tison-Rosebery;Saúl Blanco;Alex Borrini;Sébastien Boutry;William R. Budnick;Marco Cantonati;Adelaide Clode Valente;Cristina Delgado;Gerald Dörflinger;Vítor Gonçalves;Jenny Jyrkänkallio-Mikkola;Bryan Kennedy;Julien Marquié;Helena Marques;Athina Papatheodoulou;Virpi Pajunen;Javier Pérez-Burillo;Pedro Miguel Raposeiro;Catarina Ritter;António Serafim;Anette Teittinen;Bart Van de Vijver;Jianjun Wang;Janne Soininen; 《Global Ecology and Biogeography》2024,33(12):e13916
To evaluate the patterns of stream diatom beta diversity in islands versus continents across scales, to relate community similarities with spatial and environmental distances and to investigate the role of island characteristics in shaping insular diatom beta diversity. 相似文献
16.
17.
18.
19.
Nathan G. Swenson Xiangcheng Mi W. John Kress Jill Thompson María Uriarte Jess K. Zimmerman 《Ecology and evolution》2013,3(5):1173-1183
The species‐area relationship (SAR) has proven to be one of the few strong generalities in ecology. The temporal analog of the SAR, the species‐time relationship (STR), has received considerably less attention. Recent work primarily from the temperate zone has aimed to merge the SAR and the STR into a synthetic and unified species‐time‐area relationship (STAR) as originally envisioned by Preston (1960). Here we test this framework using two tropical tree communities and extend it by deriving a phylogenetic‐time‐area relationship (PTAR). The work finds some support for Preston's prediction that diversity‐time relationships, both species and phylogenetic, are sensitive to the spatial scale of the sampling. Contrary to the Preston's predictions we find a decoupling of diversity‐area and diversity‐time relationships in both forests as the time period used to quantify the diversity‐area relationship changes. In particular, diversity‐area and diversity‐time relationships are positively correlated using the initial census to quantify the diversity‐area relationship, but weakly or even negatively correlated when using the most recent census. Thus, diversity‐area relationships could forecast the temporal accumulation of biodiversity of the forests, but they failed to “back‐cast” the temporal accumulation of biodiversity suggesting a decoupling of space and time. 相似文献
20.
Jason M. Kamilar 《American journal of physical anthropology》2009,139(3):382-393
Previous research has shown that both environmental and historical factors influence the taxonomic structure of animal communities; yet, the relative importance of these effects is not known for primates. Environmental characteristics shape the possible niches in a community, providing suitable habitats for some species and not others. Therefore, communities found in similar environments should display similar species compositions. Additionally, geography may be viewed as a surrogate for historical processes. For instance, as the geographic distance between communities increases, dispersal between sites is more limited, and the probability of historical vicariance increases. Therefore, communities in close proximity to each other should exhibit similar species compositions. The geographic location, environmental characteristics, and species composition of 168 primate communities were gathered from the literature. Canonical correspondence analyses were conducted to examine the relative effects of geographic distance and environmental variables on the taxonomic structure of communities. In addition, UPGMA cluster analyses were conducted to better visualize the taxonomic similarity of communities. Spatial variables were significant predictors of community structure in all regions. Rainfall patterns explained African, Malagasy, and Neotropical community structure. In addition, maximum temperature was also correlated with community structure in Madagascar and the Neotropics. No climatic variables predicted Asian community structure. These results demonstrate that both historical and environmental factors play a significant role in structuring modern primate communities; yet, the importance of environmental factors depend on the region in question. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc. 相似文献