共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Guan Wei Jiawei Wang Yanbin Wu Xiaoxin Zheng Yile Zeng Yasong Li Xiangrong Chen 《Journal of cellular and molecular medicine》2021,25(9):4478-4486
Sirtuin 1 (SIRT1) plays a very important role in a wide range of biological responses, such as metabolism, inflammation and cell apoptosis. Changes in the levels of SIRT1 have been detected in the brain after traumatic brain injury (TBI). Further, SIRT1 has shown a neuroprotective effect in some models of neuronal death; however, its role and working mechanisms are not well understood in the model of TBI. This study aimed to address this issue. SIRT1-specific inhibitor (sirtinol) and activator (A3) were introduced to explore the role of SIRT1 in cell apoptosis. Results of the study suggest that SIRT1 plays an important role in neuronal apoptosis after TBI by inhibiting NF-κB, IL-6 and TNF-α deacetylation and the apoptotic pathway sequentially, possibly by alleviating neuroinflammation. 相似文献
3.
目的:探讨牛磺酸(Tau)预处理对弥漫性脑创伤(TBI)大鼠脑皮层超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量、脑含水量(BWC)和脑皮层水孔通道蛋白4(AQP4)表达的影响。方法:复制大鼠TBI模型,分为假手术组(S组)、TBI组(T组)、低剂量Tau组(L组)和高剂量Tau组(H组),用比色法测定脑皮层匀浆液中SOD活力和MDA含量;干/湿法测定BWC;免疫组织化学检测脑皮层AQP4的表达。结果:T组大鼠脑皮层SOD活力显著低于S组,T组MDA含量、BWC和脑皮层AQP4的表达显著高于S组;H、L组脑皮层SOD活力显著高于T组,H、L组MDA含量、BWC和脑皮层AQP4的表达显著低于T组;H、L组之间差异无显著性。结论:Tau可能通过清除TBI后产生的的氧自由基、下调TBI大鼠脑皮层AQP4的表达减轻脑水肿,发挥其脑保护作用。 相似文献
4.
Belli A Sen J Petzold A Russo S Kitchen N Smith M Tavazzi B Vagnozzi R Signoretti S Amorini AM Bellia F Lazzarino G 《Journal of neurochemistry》2006,96(3):861-869
N-Acetylaspartate (NAA) is almost exclusively localized in neurons in the adult brain and is present in high concentration in the CNS. It can be measured by proton magnetic resonance spectroscopy and is seen as a marker of neuronal damage and death. NMR spectroscopy and animal models have shown NAA depletion to occur in various types of chronic and acute brain injury. We investigated 19 patients with traumatic brain injury (TBI). Microdialysis was utilized to recover NAA, lactate, pyruvate, glycerol and glutamate, at 12-h intervals. These markers were correlated with survival and a 6-month Glasgow Outcome Score. Eleven patients died and eight survived. A linear mixed model analysis showed a significant effect of outcome and of the interaction between time of injury and outcome on NAA levels (p = 0.009 and p = 0.004, respectively). Overall, extracellular NAA was 34% lower in non-survivors. A significant non-recoverable fall was observed in this group from day 4 onwards, with a concomitant rise in lactate-pyruvate ratio and glycerol. These results suggest that mitochondrial dysfunction is a significant contributor to poor outcome following TBI and propose extracellular NAA as a potential marker for monitoring interventions aimed at preserving mitochondrial function. 相似文献
5.
6.
Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury 总被引:8,自引:0,他引:8
Beer R Franz G Krajewski S Pike BR Hayes RL Reed JC Wang KK Klimmer C Schmutzhard E Poewe W Kampfl A 《Journal of neurochemistry》2001,78(4):862-873
Recent studies have demonstrated that the downstream caspases, such as caspase 3, act as executors of the apoptotic cascade after traumatic brain injury (TBI) in vivo. However, little is known about the involvement of caspases in the initiation phase of apoptosis, and the interaction between these initiator caspases (e.g. caspase 8) and executor caspases after experimental brain injuries in vitro and in vivo. This study investigated the temporal expression and cell subtype distribution of procaspase 8 and cleaved caspase 8 p20 from 1 h to 14 days after cortical impact-induced TBI in rats. Caspase 8 messenger RNA levels, estimated by semiquantitaive RT-PCR, were elevated from 1 h to 72 h in the traumatized cortex. Western blotting revealed increased immunoreactivity for procaspase 8 and the proteolytically active subunit of caspase 8, p20, in the ipsilateral cortex from 6 to 72 h after injury, with a peak at 24 h after TBI. Similar to our previous studies, immunoreactivity for the p18 fragment of activated caspase 3 also increased in the current study from 6 to 72 h after TBI, but peaked at a later timepoint (48 h) as compared with proteolyzed caspase 8 p20. Immunohistologic examinations revealed increased expression of caspase 8 in neurons, astrocytes and oligodendrocytes. Assessment of DNA damage using TUNEL identified caspase 8- and caspase 3-immunopositive cells with apoptotic-like morphology in the cortex ipsilateral to the injury site, and immunohistochemical investigations of caspase 8 and activated caspase 3 revealed expression of both proteases in cortical layers 2-5 after TBI. Quantitative analysis revealed that the number of caspase 8 positive cells exceeds the number of caspase 3 expressing cells up to 24 h after impact injury. In contrast, no evidence of caspase 8 and caspase 3 activation was seen in the ipsilateral hippocampus, contralateral cortex and hippocampus up to 14 days after the impact. Our results provide the first evidence of caspase 8 activation after experimental TBI and suggest that this may occur in neurons, astrocytes and oligodendrocytes. Our findings also suggest a contributory role of caspase 8 activation to caspase 3 mediated apoptotic cell death after experimental TBI in vivo. 相似文献
7.
Teuntje M. J. C. Andriessen Bram Jacobs Pieter E. Vos 《Journal of cellular and molecular medicine》2010,14(10):2381-2392
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13–15) and moderate (GCS 9–12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mechanisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI. 相似文献
8.
目的:研究高压氧(HBO)对大鼠创伤性脑损伤(TBI)治疗效用并观察脑组织星形胶质细胞活化及胶质细胞源性神经营养因子(GDNF)和神经生长因子(NGF)表达的变化以探讨作用机制。方法:SD雄性大鼠54只,随机分为3组(n=18):假手术组、TBI组和HBO治疗组。采用Feeney法建立大鼠TBI模型,假手术组只开放骨窗,不予打击。HBO治疗组大鼠于脑损伤后6 h采用动物高压舱,以3ATA压力纯氧治疗60 min。TBI后48 h测量神经功能,然后分离脑组织,其中18只用干湿法测定脑含水量;18只脑组织用于切片,部分进行尼氏染色后作形态学观察,部分进行免疫组织化学染色,检测星形胶质细胞标记物胶质纤维酸性蛋白(GFAP)、波形蛋白(vimentin)与S100蛋白的表达;另18只大鼠取伤侧脑半球,进行Western blot分析,观察GDNF和NGF的表达。结果:HBO治疗能减轻神经功能障碍,降低脑含水量,减少海马部位神经细胞丢失,进一步激活损伤侧皮质与海马部位GFAP、vimentin与S-100阳性表达星形胶质细胞,促进损伤侧脑组织GDNF与NGF的表达。结论:HBO对创伤性脑损伤有较好治疗效果,其机制与上调GDNF和NGF的表达有关。 相似文献
9.
Thérèse M. Delahunty Ji Y. Jiang Raiford T. Black Bruce G. Lyeth 《Neurochemical research》1995,20(4):405-411
In the fluid percussion model of traumatic brain injury (TBI), we examined muscarinic and metabotropic glutamate receptor-stimulated polyphosphoinositide (PPI) turnover in rat hippocampus. Moderate injury was obtained by displacement and deformation of the brain within the closed cranial cavity using a fluid percussion device. Carbachol and (±)-1-Aminocyclopentane-trans-1,3.-dicarboxylic acid (trans-ACPD)-stimulated PPI hydrolysis was assayed in hippocampus from injured and sham-injured controls at both 1 hour and 15 days following injury. At 1 hour after TBI, the response to carbachol was enhanced in injured rats by up to 200% but the response to trans-ACPD was diminished by as much as 28%. By contrast, at 15 days after TBI, the response to carbachol was enhanced by 25% and the response to trans-ACPD was enhanced by 73%. The ionotropic glutamate agonists N-methyl-D-aspartate (NMDA), and -amino-3 hydroxy-5-methyl-4-isoxazolepropionate (AMPA), did not increase PPI hydrolysis in either sham or injured rats and injury did not alter basal hydrolysis. Thus, hippocampal muscarinic and metabotropic receptors linked to phospholipase C are differentially altered by TBI.Abbreviations used TBI
traumatic brain injury
- EAA
excitatory amino acids
- PPI
polyphosphoinositides
- IP
inositol phosphates
- NMDA
N-methyl-D-aspartate
- AMPA
-amino-3-hydroxy-5-methylisoxazole-4-propionate
- trans-ACPD
(±)-1-Aminocyclopentanetrans-1,3-dicarboxylic acid
- LTP
long term potentiation 相似文献
10.
《Expert review of proteomics》2013,10(4):603-614
Traumatic brain injury (TBI) is a major national health problem without a US Food and Drug Administration-approved therapy. This review summarizes the importance of discovering relevant TBI protein biomarkers and presents logical rationale that neuroproteomic technologies are uniquely suited for the discovery of otherwise unnoticed TBI biomarkers. It highlights that one must make careful decisions when choosing which paradigm (human vs. animal models) and which biologic samples to use for such proteomic studies. It further outlines some of the desirable attributes of an ideal TBI biomarker and discusses how biomarkers discovered proteomically are complementary to those identified by traditional approaches. Lastly, the most important sequela of any proteomically identified TBI biomarker is validation in preclinical or clinical samples. 相似文献
11.
Fangfang Wu Ke Xu Kebin Xu Chenhuai Teng Man Zhang Leilei Xia Kairui Zhang Lei Liu Zaifeng Chen Jian Xiao Yanqing Wu Hongyu Zhang Daqing Chen 《Journal of cellular and molecular medicine》2020,24(2):1220-1232
Blood‐brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl‐3n‐butylphthalide (Dl‐NBP) has a neuroprotective effect with anti‐inflammatory, anti‐oxidative, anti‐apoptotic and mitochondrion‐protective functions. However, the effect and molecular mechanism of Dl‐NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH‐SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl‐NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up‐regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy‐related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl‐NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl‐NBP for TBI recovery. Collectively, our current studies indicate that Dl‐NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl‐NBP, as an anti‐inflammatory and anti‐oxidative drug, may act as an effective strategy for TBI recovery. 相似文献
12.
P Luo T Chen Y Zhao L Zhang Y Yang W Liu S Li W Rao S Dai J Yang Z Fei 《Cell death & disease》2014,5(4):e1174
Traumatic brain injury (TBI) produces excessive glutamate, leading to excitotoxicity via the activation of glutamate receptors. Postsynaptic density scaffold proteins have crucial roles in mediating signal transduction from glutamate receptors to their downstream mediators. Therefore, studies on the mechanisms underlying regulation of excitotoxicity by scaffold proteins can uncover new treatments for TBI. Here, we demonstrated that the postsynaptic scaffold protein Homer 1a was neuroprotective against TBI in vitro and in vivo, and this neuroprotection was associated with its effects on group I metabotropic glutamate receptors (mGluRs). Upon further study, we found that Homer 1a mainly affected neuronal injury induced by mGluR1 activation after TBI and also influenced mGluR5 function when its activity was restored. The ability of Homer 1a to disrupt mGluR-ERK signaling contributed to its ability to regulate the functions of mGluR1 and mGluR5 after traumatic injury. Intracellular Ca2+ and PKC were two important factors involved in the mediation of mGluR-ERK signaling by Homer 1a. These results define Homer 1a as a novel endogenous neuroprotective agent against TBI. 相似文献
13.
14.
Zhiqing Zeng Yao Zhang Weiping Jiang Lu He Hongtao Qu 《Journal of cellular physiology》2020,235(3):1973-1985
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications. 相似文献
15.
Neuroprotection by quercetin via mitochondrial function adaptation in traumatic brain injury: PGC‐1α pathway as a potential mechanism 下载免费PDF全文
Xiang Li Handong Wang Guodao Wen Liwen Li Yongyue Gao Zong Zhuang Mengliang Zhou Lei Mao Youwu Fan 《Journal of cellular and molecular medicine》2018,22(2):883-891
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway. 相似文献
16.
Li Zhang Handong Wang Xiaoming Zhou Lei Mao Ke Ding Zhigang Hu 《Journal of cellular and molecular medicine》2019,23(4):2995-3009
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI. 相似文献
17.
18.
Junfang Wu Bogdan A Stoica Tao Luo Boris Sabirzhanov Zaorui Zhao Kelsey Guanciale 《Cell cycle (Georgetown, Tex.)》2014,13(15):2446-2458
Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C–C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory—evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation. 相似文献
19.
There is growing evidence of the brain's ability to increase its reliance on alternative metabolic substrates under conditions of energy stress such as starvation, hypoxia and ischemia. We hypothesized that following traumatic brain injury (TBI), which results in immediate changes in energy metabolism, the adult brain increases uptake and oxidation of the alternative substrate beta-hydroxybutyrate (betaHB). Arterio-venous differences were used to determine global cerebral uptake of betaHB and production of 14CO2 from [14C]3-betaHB 3 h after controlled cortical impact (CCI) injury. Quantitative bioluminescence was used to assess regional changes in ATP concentration. As expected, adult sham and CCI animals with only endogenously available betaHB showed no significant increase in cerebral uptake of betaHB or 14CO2 production. Increasing arterial betaHB concentrations 2.9-fold with 3 h of betaHB infusion failed to increase cerebral uptake of betaHB or 14CO2 production in adult sham animals. Only CCI animals that received a 3-h betaHB infusion showed an 8.5-fold increase in cerebral uptake of betaHB and greater than 10.7-fold increase in 14CO2 production relative to sham betaHB-infused animals. The TBI-induced 20% decrease in ipsilateral cortical ATP concentration was alleviated by 3 h of betaHB infusion beginning immediately after CCI injury. 相似文献
20.
Douglas D. Taylor Cicek Gercel-Taylor 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1652)
We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression. 相似文献