首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Background

Protein kinases are key regulators of cellular processes (such as proliferation, apoptosis and invasion) that are often deregulated in human cancers. Accordingly, kinase genes have been the first to be systematically analyzed in human tumors leading to the discovery that many oncogenes correspond to mutated kinases. In most cases the genetic alterations translate in constitutively active kinase proteins, which are amenable of therapeutic targeting. Tumours of the pancreas are aggressive neoplasms for which no effective therapeutic strategy is currently available.

Methodology/Principal Findings

We conducted a DNA-sequence analysis of a selected set of 35 kinase genes in a panel of 52 pancreatic exocrine neoplasms, including 36 pancreatic ductal adenocarcinoma, and 16 ampulla of Vater cancer. Among other changes we found somatic mutations in ATM, EGFR, EPHA3, EPHB2, and KIT, none of which was previously described in cancers.

Conclusions/Significance

Although the alterations identified require further experimental evaluation, the localization within defined protein domains indicates functional relevance for most of them. Some of the mutated genes, including the tyrosine kinases EPHA3 and EPHB2, are clearly amenable to pharmacological intervention and could represent novel therapeutic targets for these incurable cancers.  相似文献   

2.
EPH kinases are the largest family of receptor tyrosine kinases, and their ligands, ephrins (EFNs), are also cell surface molecules. This work presents evidence that EPHB4 on vascular smooth muscle cells (VSMCs) is involved in blood pressure regulation. We generated gene KO mice with smooth muscle cell-specific deletion of EPHB4. Male KO mice, but not female KO mice, were hypotensive. VSMCs from male KO mice showed reduced contractility when compared with their WT counterparts. Signaling both from EFNBs to EPHB4 (forward signaling) and from EPHB4 to EFNB2 (reverse signaling) modulated VSMC contractility. At the molecular level, the absence of EPHB4 in VSMCs resulted in compromised signaling from Ca2+/calmodulin-dependent protein kinase II (CaMKII) to myosin light chain kinase (MLCK) to myosin light chain, the last of which controls the contraction force of motor molecule myosin. Near the cell membrane, an adaptor protein GRIP1, which can associate with EFNB2, was found to be essential in mediating EPHB4-to-EFNB reverse signaling, which regulated VSMC contractility, based on siRNA gene knockdown studies. Our research indicates that EPHB4 plays an essential role in regulating small artery contractility and blood pressure.  相似文献   

3.
4.
ALK (anaplastic lymphoma kinase) is oncogenic in several tumours and has recently been identified as a predisposition gene for familial NB (neuroblastoma) harbouring mutations in the TKD (tyrosine kinase domain). We have analysed a large set of sporadic human NB primary tumours of all clinical stages for chromosomal re-arrangements using a CGH (comparative genomic hybridization) array (n=108) and mutations of the ALK gene (n=90), and expression of ALK and related genes (n=19). ALK amplification or in-gene re-arrangements were found in 5% of NB tumours and mutations were found in 11%, including two novel not previously published mutations in the TKD, c.3733T>A and c.3735C>A. DNA mutations in the TKD and gene amplifications were only found in advanced large primary tumours or metastatic tumours, and correlated with the expression levels of ALK and downstream genes as well as other unfavourable features, and poor outcome. The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.  相似文献   

5.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that is mutated in approximately 10% of pediatric neuroblastoma (NB). To shed light on ALK-driven signaling processes, we employed BioID-based in vivo proximity labeling to identify molecules that interact intracellularly with ALK. NB-derived SK-N-AS and SK-N-BE(2) cells expressing inducible ALK-BirA* fusion proteins were generated and stimulated with ALKAL ligands in the presence and absence of the ALK tyrosine kinase inhibitor (TKI) lorlatinib. LC/MS-MS analysis identified multiple proteins, including PEAK1 and SHP2, which were validated as ALK interactors in NB cells. Further analysis of the ALK-SHP2 interaction confirmed that the ALK-SHP2 interaction as well as SHP2-Y542 phosphorylation was dependent on ALK activation. Use of the SHP2 inhibitors, SHP099 and RMC-4550, resulted in inhibition of cell growth in ALK-driven NB cells. In addition, we noted a strong synergistic effect of combined ALK and SHP2 inhibition that was specific to ALK-driven NB cells, suggesting a potential therapeutic option for ALK-driven NB.  相似文献   

6.
7.
Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp2]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.  相似文献   

8.
We report the mapping of the human and mouse genes encoding SEK1 (SAPK/ERK kinase-1), a newly identified protein kinase that is a potent physiological activator of the stress-activated protein kinases. The human SERK1 gene was assigned to human chromosome 17 using genomic DNAs from human–rodent somatic cell hybrid lines. A specific human PCR product was observed solely in the somatic cell line containing human chromosome 17. The mouseSerk1gene was mapped to chromosome 11, closely linked toD11Mit4,using genomic DNAs from a (C57BL/6J ×Mus spretus)F1×M. spretusbackcross.  相似文献   

9.
10.
Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.  相似文献   

11.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll- and bundle-sheath cells. Although the C4 cycle is biochemically well understood, many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive. Protein kinases are likely involved in these regulatory processes, providing links to hormonal, metabolic and developmental signal-transduction pathways. Here we describe the cloning and characterization of 14 different putative protein kinase leaf cDNA clones from the C4 plant Sorghum bicolor. These genes belong to three different protein kinase subfamilies: ribosomal protein S6 kinases, SNF1-like protein kinases, and receptor-like protein kinases. We report the partial cDNA sequences, mesophyll/bundle-sheath steady-state mRNA ratios, mesophyll/etiolated leaf steady-state mRNA ratios, and the positions of 14 protein kinase genes on the genetic map of S. bicolor. Only three of the protein kinase genes described here are expressed preferentially in mesophyll cells as compared with the bundle-sheath. Received: 16 January 1998 / Accepted: 3 April 1998  相似文献   

12.
《PloS one》2014,9(11)
Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL). The Proviral Integration site of Moloney murine leukemia virus (PIM) kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs) and pharmacologically (mainly with the pan-PIM inhibitor (PIMi) ETP-39010) in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL) cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.  相似文献   

13.
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.  相似文献   

14.
Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.  相似文献   

15.
The isolation and expression analysis of four partial gene sequences from rose (Rosa hybrida cv. Linda) belonging to the receptor-like kinase gene superfamily are reported. These genes have been designated RhSERK1 to RhSERK4 (Accession No. EF631967 to EF631970) as they exhibit high sequence identities with genes from the somatic embryogenesis receptor-like kinase (SERK) family in other plant species. The RhSERK genes are differentially expressed in non-embryogenic callus, embryogenic callus, mature somatic embryos and a range of tissues from intact plants, indicating a broad role in plant growth and development. However, the expressions of RhSERK3 and RhSERK4 were approximately fivefold higher in embryogenic callus than in non-embryogenic callus, and they are even higher when compared to tissues from intact plants. In addition, RhSERK4 expression was approximately eightfold higher in somatic embryos than in embryogenic callus. These results suggest that the expression pattern of RhSERK3 and RhSERK4 may be used as a marker of somatic embryogenesis.  相似文献   

16.

Background  

There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis.  相似文献   

17.
18.
Taurocyamine kinase (TK) is a member of the highly conserved family of phosphagen kinases that includes creatine kinase (CK) and arginine kinase. TK is found only in certain marine annelids. In this study we used PCR to amplify two cDNAs coding for TKs from the polychaete Arenicola brasiliensis, cloned these cDNAs into the pMAL plasmid and expressed the TKs as fusion proteins with the maltose-binding protein. These are the first TK cDNA and deduced amino acid sequences to be reported. One of the two cDNA-derived amino acid sequences of TKs shows a high amino acid identity to lombricine kinase, another phosphagen kinase unique to annelids, and appears to be a cytoplasmic isoform. The other sequence appears to be a mitochondrial isoform; it has a long N-terminal extension that was judged to be a mitochondrial targeting peptide by several on-line programs and shows a higher similarity in amino acid sequence to mitochondrial creatine kinases from both vertebrates and invertebrates. The recombinant cytoplasmic TK showed activity for the substrates taurocyamine and lombricine (9% of that of taurocyamine). However, the mitochondrial TK showed activity for taurocyamine, lombricine (30% of that of taurocyamine) and glycocyamine (7% of that of taurocyamine). Neither TK catalyzed the phosphorylation of creatine. Comparison of the deduced amino acid sequences of mitochondrial CK and TK indicated that several key residues required for CK activity are lacking in the mitochondrial TK sequence. Homology models for both cytoplasmic and mitochondrial TK, constructed using CK templates, provided some insight into the structural correlation of differences in substrate specificity between the two TKs. A phylogenetic analysis using amino acid sequences from a broad spectrum of phosphagen kinases showed that annelid-specific phosphagen kinases (lombricine kinase, glycocyamine kinase and cytoplasmic and mitochondrial TKs) are grouped in one cluster, and form a sister-group with CK sequences from vertebrate and invertebrate groups. It appears that the annelid-specific phosphagen kinases, including cytoplasmic and mitochondrial TKs, evolved from a CK-like ancestor(s) early in the divergence of the protostome metazoans. Furthermore, our results suggest that the cytoplasmic and mitochondrial isoforms of TK evolved independently.  相似文献   

19.
It is well established that brief episodes of ischemia/reperfusion (I/R) [preconditioning (PC)] protect the myocardium from the damage induced by subsequent more prolonged I/R. However, the signaling pathways activated during PC or I/R are not well characterized. In this study, the role of Ras-GTPase, tyrosine kinases (TKs), epidermal growth factor receptor (EGFR) and Ca2 +/calmodulin-dependent protein kinase II (CaMK II) in mediating PC in a perfused rat heart model was investigated. A 40-min episode of global ischemia in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP), and impaired coronary hemodynamics, measured as coronary flow (CF) and coronary vascular resistance (CVR). PC significantly enhanced cardiac recovery after I/R. Combination of PC and FPT III (Ras-GTPase inhibitor FPT III; 232 ng/min for 6 days) treatment did not produce any additive benefits as compared to PC alone. In contrast, PC-induced improvements in cardiac function after I/R were significantly attenuated by pretreatment with genistein (1mg/kg/day for 6 days), a broad-spectrum inhibitor of TKs, or AG1478 (1mg/kg/day for 6 days), a specific inhibitor of EGFR tyrosine kinase or KN-93 (578 ng/min for 6 days), a CaMK II inhibitor, before PC. These observations suggest that PC and FPT III pretreatment may produce cardioprotection via similar mechanisms. Present results also indicate that activation of TKs and specifically activation of EGFR-mediated TKs and CaMK II-mediated regulation of calcium homeostasis are part of the PC mechanisms that improve recovery after I/R. (Mol Cell Biochem 268: 175–183, 2005)  相似文献   

20.
Mitogen‐activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single‐mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double‐mutants are created from a large library of single‐mutant lines. Here we describe a new collection of 275 double‐mutant lines derived from a library of single‐mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high‐throughput double‐mutant generating pipeline using a system for growing Arabidopsis seedlings in 96‐well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double‐mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single‐mutant line. Seeds for this double‐mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double‐mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号