首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Understanding the drift dynamics of pallid sturgeon (Scaphirhynchus albus) early life intervals is critical to evaluating damming effects on sturgeons. However, studying dispersal behavior is difficult in rivers. In stream tanks, we studied the effect of velocity on dispersal and holding ability, estimated swimming height, and used the data to estimate drift distance of pallid sturgeon. Dispersal was by days 0–10 embryos until fish developed into larvae on day 11 after 200 CTU (daily cumulative temperature units). Embryos in tanks with a mean channel velocity of 30.1 cm s−1 and a side eddy could not hold position in the eddy, so current controlled dispersal. Late embryos (days 6–10 fish) dispersed more passes per hour than early embryos (days 0–5 fish) and held position in side eddies when channel velocities were 17.3 cm s−1 or 21.1 cm s−1. Day and night swim‐up and drift by embryos is an effective adaptation to disperse fish in channel flow and return fish from side eddies to the channel. Early embryos swam <0.50 cm above the bottom and late embryos swam higher (mean, 90 cm). A passive drift model using a near bottom velocity of 32 cm s−1 predicted that embryos dispersing for 11 days in channel flow would travel 304 km. Embryos spawned at Fort Peck Dam, Missouri River, must stop dispersal in <330 km or enter Lake Sakakawea, where survival is likely poor. The model suggests there may be a mismatch between embryo dispersal distance and location of suitable rearing habitat. This situation may be common for pallid sturgeon in dammed rivers.  相似文献   

2.
Lake sturgeon larval drift is not uniform in time or space and subsequent efforts to determine the relative abundance have suffered because of the lack of information during this early life history period. The purpose of this study was to obtain information about the early life history of lake sturgeon, determine the extent and duration of lake sturgeon larval drift, and examine this relationship to water flow and temperature in the Upper Black River, Michigan. This study also compares the results of other studies to further evaluate the dispersion of larvae. Larval production was quantified using drift nets anchored to the stream bottom from May to June in 2000–2002. Larval drift nets captured 780 larvae in 2000; 2975 larvae in 2001; and 2041 larvae in 2002. For the 2000, 2001, and 2002 spawning season, we estimated that 7107 (95% CL: ± 1470), 17 409 (95% CL: ± 5163), and 15 820 (95% CL: ± 3168) larval lake sturgeon were produced in the Upper Black River (UBR), respectively. Catch per unit effort values of drifting larvae were greatest after peak water flows, with most larvae captured in the middle of the river channel. A mean daily water temperature above 16°C was an important environmental stimulus that influenced peak larval dispersion away from spawning sites. The results of this study suggested that natural reproduction was still occurring in the Black Lake system.  相似文献   

3.
Free embryos of wild pallid sturgeon Scaphirhynchus albus were released in the Missouri River and captured at downstream sites through a 180-km reach of the river to examine ontogenetic drift and dispersal processes. Free embryos drifted primarily in the fastest portion of the river channel, and initial drift velocities for all age groups (mean = 0.66–0.70 m s−1) were only slightly slower than mean water column velocity (0.72 m s−1). During the multi-day long-distance drift period, drift velocities of all age groups declined an average of 9.7% day−1. Younger free embryos remained in the drift upon termination of the study; whereas, older age groups transitioned from drifting to settling during the study. Models based on growth of free embryos, drift behavior, size-related variations in drift rates, and channel hydraulic characteristics were developed to estimate cumulative distance drifted during ontogenetic development through a range of simulated water temperatures and velocity conditions. Those models indicated that the average free embryo would be expected to drift several hundred km during ontogenetic development. Empirical data and model results highlight the long-duration, long-distance drift and dispersal processes for pallid sturgeon early life stages. In addition, results provide a likely mechanism for lack of pallid sturgeon recruitment in fragmented river reaches where dams and reservoirs reduce the length of free-flowing river available for pallid sturgeon free embryos during ontogenetic development.  相似文献   

4.
Lake sturgeon Acipenser fulvescens spawn at the base of Kakabeka Falls, a 39 m waterfall on the Kaministiquia River, a tributary to Lake Superior. Access to this historical spawning site can be restricted or delayed due to hydroelectric flow fluctuations that coincide with the A. fulvescens spawning season. The objectives of this study were to determine (a) the necessary flow conditions that facilitate spawning site access; (b) quantity and duration of flow required for successful spawning and dispersal of larvae; and (c) evaluate recruitment of juvenile A. fulvescens in relation to flow. A. fulvescens spawning migrations were tracked using a stationary telemetry receiver that logged the movements of 166 A. fulvescens fitted with radio-transmitters. Unrestricted access to the spawning site was facilitated when spawning flow was controlled at 23 m3 s−1 in 2004 and 17 m3 s−1 in 2006. Fluctuating (0.5–8.5 m3 s−1) and delayed spawning flows resulted in restricted and delayed access to the spawning site. Flow duration for successful egg incubation, hatch and larval dispersal was determined by sampling larvae using drift nets and quantified using cumulative temperature units (CTU). Over 10 years, 10,083 larvae were captured between 31 May and 20 July with 97% of the drift occurring prior to 30 June. From the date of first spawning to the end of larval dispersal took an average of 38.6 days, and the mean CTU value was 398.6. In general, a minimum flow of approximately 14.5 m3 s−1 from the date of initial spawning to the accumulation of c. 400 CTU ensured successful hatch and larval dispersal. During the timeframe of this study, recruitment was variable. This study described the complex and variable reproductive life history of A. fulvescens and defined spawning flow requirements ecologically, which can be used to develop operational provisions at hydropower facilities to ensure successful reproduction.  相似文献   

5.
Stream and river ecosystems present fluvial fishes with a dynamic energy landscape because moving water generates heterogeneous flow fields that are rarely static in space and time. Fish movement behavior should be consistent with conserving energy in these dynamic flowing environments, but little evidence supporting this hypothesis exists. Here, we tested experimentally whether three general movement behaviors—against the current, with the current, or holding position (i.e., staying in one position and location)—were performed in a way consistent with minimizing the cost of swimming in a heterogeneous flow field. We tested the effects of water velocity on movement behavior across three age classes (0, 1, and 5 years) of two different fluvial specialist fishes, the pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorynchus). Individuals from the three age classes were exposed to a continuous and dynamic velocity field ranging from 0.02 to 0.53 m s−1, which represented natural benthic flow regimes occupied by these species in rivers. Both sturgeon species exhibited the same pattern with regard to their tendency to hold position, move upstream, or move downstream. Moving downstream was positively associated with velocity for all age groups. Moving upstream was inversely related to velocity for young fish, but as the fish aged, moving upstream was not related to water velocity. The oldest fish (age 5) moved upstream more frequently compared to the younger age classes. Holding position within a water current was the most frequent behavior and occurred with similar probability across the range of experimental velocity for youngest fish (age 0), but was inversely related to velocity in older fish. Our experiment across age classes suggests that the suite of swimming behaviors exhibited by fluvial specialists might have evolved to mitigate the energetic costs of complex energy landscapes generated by moving water to ultimately maximize net energy gain.  相似文献   

6.
Drift nets have been used to document reproductive success of lake sturgeon Acipenser fulvescens. Current net designs and methods for collecting drifting larvae only sample a portion of the water column, which require assumptions of either a benthic or uniform distribution of larvae when estimating abundance or production. The objective of this study was to describe the vertical distribution of larval lake sturgeon in the Peshtigo River, Wisconsin, and to determine if drift was benthic or uniform in distribution. A net was designed to assess the vertical distribution of drifting larvae in 0.2-m increments at depths up to 1.4 m; however, during this sampling, maximum depth did not exceed 0.78 m. The distribution of larval lake sturgeon was neither benthic nor uniform. Only 5% of larvae were captured in the lowest 0.2-m increment, followed by 18% from 0.2 to 0.4 m, 41% from 0.4 to 0.6 m, and 36% from 0.6 m to the surface. Although results will likely differ among years, systems, and the precise location of sampling, our study illustrates the importance of and provides a technique for testing assumptions of the vertical distribution of larval lake sturgeon drift.  相似文献   

7.
Estimates of age derived from daily ring counts from otoliths and capture rates of larval June sucker Chasmistes liorus were used to determine the relationship between discharge rates of the Provo River and residence time and patterns of larval drift. During 1997, larval drift occurred over a 22 day period when discharge rates were low (mean ±s.d. 3·2 ± 0·0 m3 s?1). In 1998, larval drift occurred in two separate events over a 40 day period. Discharge was higher during the first larval drift period (19 days; 24·8 ± 1·3 m3 s?1) and lower during the second larval drift period (17 days; 7·0 ± 0·9 m3 s?1). In 1997, no larval fish were collected at the lowermost transect on the Provo River (nearest Utah Lake), and few larvae >21 days of age were found. During the first drift period of 1998, larval C. liorus were collected at all transects, and mean age of larvae collected between upstream and downstream transects increased by c. 7 days. During the second drift period of 1998, only a few were collected in the lowermost transects, and age did not increase with proximity to the lake. Patterns in catch and age distribution of larval C. liorus in the lower Provo River suggest that recruitment failure occurs during the larval drift period in years with insufficient discharge to transport larvae into the lake.  相似文献   

8.
Lake sturgeon Acipenser fulvescens are imperiled throughout the Laurentian Great Lakes basin. Efforts to restore this species to former population levels have been ineffective due in part to limited information regarding its early life history. The objectives of this study were to characterize the larval drift and biological attributes of age‐0 lake sturgeon in the lower Peshtigo River, Wisconsin. Lake sturgeon larvae were captured from May to June 2002 and 2003 using drift nets, while age‐0 juveniles were captured from June through October 2002 and 2003 using wading, snorkeling, backpack electrofishing, and haul‐seine surveys. Larval drift occurred within 14 days of adult spawning and extended from 1 to 3 weeks in duration, with two peaks in the number of fish drifting downstream each year. Larvae had a median total length (TL) of 19 mm (range: 13–23; N = 159) in 2002 and 18 mm (range: 13–24; N = 652) in 2003. Catch‐per‐unit‐effort for larvae was 0.18 fish h?1 m2 and 0.94 fish h?1 m2 in 2002 and 2003, respectively. Age‐0 juvenile lake sturgeon exhibited rapid growth (i.e. 2.57 mm day?1 in TL and 0.66 g day?1 in wet weight) throughout summer and fall months; relative condition of fish in both years was approximately 100, indicating good condition. Absolute abundance of age‐0 juveniles in 2003 was estimated at 261 fish using the Schnabel estimator. The results from this study indicate that the lower Peshtigo River contains important nursery habitats suitable for age‐0 lake sturgeon.  相似文献   

9.
Information on growth during the larval and young‐of‐year life stages in natural river environments is generally lacking for most sturgeon species. In this study, methods for estimating ages and quantifying growth were developed for field‐sampled larval and young‐of‐year shovelnose sturgeon Scaphirhynchus platorynchus in the upper Missouri River. First, growth was assessed by partitioning samples of young‐of‐year shovelnose sturgeon into cohorts, and regressing weekly increases in cohort mean length on sampling date. This method quantified relative growth because ages of the cohorts were unknown. Cohort increases in mean length among sampling dates were positively related (P < 0.05, r2 > 0.59 for all cohorts) to sampling date, and yielded growth rate estimates of 0.80–2.95 mm day−1 (2003) and 0.44–2.28 mm day−1 (2004). Highest growth rates occurred in the largest (and earliest spawned) cohorts. Second, a method was developed to estimate cohort hatch dates, thus age on date of sampling could be determined. This method included quantification of post‐hatch length increases as a function of water temperature (growth capacity; mm per thermal unit, mm TU−1), and summation of mean daily water temperatures to achieve the required number of thermal units that corresponded to post‐hatch lengths of shovelnose sturgeon on sampling dates. For six of seven cohorts of shovelnose sturgeon analyzed, linear growth models (r2 ≥ 0.65, P < 0.0001) or Gompertz growth models (r2 ≥ 0.83, P < 0.0001) quantified length‐at‐age from hatch through 55 days post‐hatch (98–100 mm). Comparisons of length‐at‐age derived from the growth models indicated that length‐at‐age was greater for the earlier‐hatched cohorts than later‐hatched cohorts. Estimated hatch dates for different cohorts were corroborated based on the dates that newly‐hatched larval shovelnose sturgeon were sampled in the drift. These results provide the first quantification of growth dynamics for field‐sampled age‐0 shovelnose sturgeon in a natural river environment, and provide an accurate method for estimating age of wild‐caught individuals. Methods of age determination used in this study have applications to sturgeons in other regions, but require additional testing and validation.  相似文献   

10.
The feeding activity of an individual fish larva is described by an equation which includes parameters for the area successfully searched, probability of food capture multiplied by the cross-sectional perceptive visual field, larval swimming speed and the time required to consume a unit of food energy. The proportion of ingested food energy used for metabolism increases exponentially with increasing swimming speed. The model predicts that food consumption rate increases asymptotically whereas metabolic rate increases exponentially. This results in a predicted growth rate curve that reaches a maximum at a certain swimming speed and decreases at both higher and lower speeds. The model can be used to predict the influence of type of prey, prey density, water temperature etc. on larval growth. An expression describing how many hours per day fish larvae must forage in order to grow at a certain daily body weight gain allows the limits of environmental conditions for positive, zero and negative growth rate to be set. Results of simulations demonstrated that the optimum swimming speed for maximum growth of coregonid larvae increased with an increase in food density, decrease in water temperature or decrease of prey vulnerability. At optimum ‘theoretical’ swimming speed an increase in water temperature from 5 to 17° C required the food density to be increased from 20 to 80 copepods l?1 in order to maintain a daily growth increment of 2%. The minimum Artemia density required for maintenance metabolism increased from 10 to 30 items 11 over the same temperature increase from 5 to 17° C, and food densities required for 8% growth rates were 26 and 56 Artemia nauplii l?1 at 5 and 17° C, respectively. Contrary to previous findings, results of the present study suggest that metabolic rates of actively feeding fish larvae may be from 5 to 50 times the standard metabolic rate: earlier studies suggested that a factor of 2–3 may be generally applicable.  相似文献   

11.
Critical (<30 min) and prolonged (>60 min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46·4 cm s?1 and 44·6 relative body lengths (LB) s?1] and prolonged (maximum 15·4 cm s?1, 15·6 LB s?1) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0·1 cm s?1, 0·3 LB s?1) and prolonged swimming speeds (minimum 1·1 cm s?1, 1·0 LB s?1). Prolonged swimming trials determined that the larvae of some species could not swim for 60 min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60 min at 44% of the critical speed. The swimming performance of species with precocial life‐history strategies, with well‐developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life‐history strategies, with poorly developed larvae at hatch.  相似文献   

12.
A small irrigation diversion dam near Chiloquin, Oregon, was removed and replaced with a pump station to improve fish passage for Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) entering the Sprague River on their spawning migrations. During the developmental phase of the pump station, a need was identified to better understand the larval drift characteristics of these endangered catostomids in order to reduce entrainment into the irrigation system. The spatial, seasonal, and diel distribution of drifting larvae was measured during the 2004 spawning season at two proposed sites on the Williamson River where the pump station could be located. Larval drift for both species coincided with the irrigation season making them subject to entrainment into the irrigation system. Drift occurred almost exclusively at night with larvae entering the drift at sunset and exiting the drift at sunrise. Nighttime larval densities were concentrated near the surface and at midchannel at both sites. Densities were generally greater on the side of mid-channel with greater flow. During early morning sampling we detected a general shift in larval drift from surface to subsurface drift. We also observed an increase in larval densities towards the shore opposite from the proposed pump station at the upper site whereas larval densities remained high at midchannel at the lower site. During daytime sampling, the few larvae that were collected were distributed throughout the water column at both pump sites. This study found that larvae drifting during all time periods were generally distributed further across the cross section, deeper in the water column, and closer to where the proposed water withdrawal structure would be built at the downstream site when compared to the upstream site. Recommendations were provided to locate the withdrawal facility at the upstream site and operate it in a manner such that larval entrainment would likely be minimized.  相似文献   

13.
Water temperature and flow velocity directly affect the fish swimming capacity, and thus, both variables influence the fish passage through river barriers. Nonetheless, their effects are usually disregarded in fishway engineering and management. This study aims to evaluate the volitional swimming capacity of the northern straight-mouth nase (Pseudochondrostoma duriense), considering the possible effects of water temperature, flow velocity and body size. For this, the maximum distance, swim speed and fatigue time (FT) were studied in an outdoor open-channel flume in the Duero River (Burgos, Spain) against three nominal velocities (1.5, 2.5 and 3 m s−1) and temperatures (5.5, 13.5 and 18.5°C), also including the changes between swimming modes (prolonged and sprint). Results showed that a nase of 20.8 cm mean fork length can develop a median swim speed that exceeds 20.7 BL s−1 (4.31 m s−1) during a median time of 3.4 s in sprint mode, or 12.2 BL s−1 (2.55 m s−1) for 23.7 s in prolonged mode under the warmest scenario. During prolonged swimming mode, fish were able to reach further distances in warmer water conditions for all situations, due to a greater swimming speed and FT, whereas during sprint mode, warmer conditions increased the swim speed maintaining the FT. In conclusion, the studied temperature range and flow velocity range influence fish swimming performance, endurance and distance travelled, although with some differences depending on the swimming mode. The provided information goes a step forward in the definition of real fish swimming capacities, and in turn, will contribute to establish clear passage criteria for thermo-velocity barriers, allowing the calculation of the proportion of fish able to pass a barrier under different working scenarios, as well designing of the optimized solutions to improve the fish passage through river barriers.  相似文献   

14.
This study investigated the effects of two environmental factors, temperature and light, on larval settlement and metamorphosis in the solitary ascidian Styela canopus. The results revealed that larval settlement rates decreased with increasing temperature in the range 12–30°C. We also demonstrated for the first time that pre-settlement metamorphosis of ascidian larvae can occur as a function of temperature. We suggest this could be an adaptation to avoid the greater energetic cost of active larval swimming, presumably resulting from the increasing temperature. They are able to metamorphose into passive drifting post-larvae and to continue planktonic life. This finding has implications for larval dispersal, especially under conditions of ocean warming. In addition, the effect of light intensity on larval settlement and metamorphosis was significantly different between photoperiods of 24 L : 0 D and 12 L : 12 D. These results provide some insight into the complex cues affecting settlement and metamorphosis of ascidian larvae and ascidian distribution in nature.  相似文献   

15.
Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water‐hardened eggs were semi‐buoyant and non‐adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.  相似文献   

16.
This study evaluated the effects of environmental parameters on the probability of capturing endangered pallid sturgeon (Scaphirhynchus albus) using trotlines in the lower Mississippi River. Pallid sturgeon were sampled by trotlines year round from 2008 to 2011. A logistic regression model indicated water temperature (T; P < 0.01) and depth (D; P = 0.03) had significant effects on capture probability (Y = ?1.75 ? 0.06T + 0.10D). Habitat type, surface current velocity, river stage, stage change and non‐sturgeon bycatch were not significant predictors (P = 0.26–0.63). Although pallid sturgeon were caught throughout the year, the model predicted that sampling should focus on times when the water temperature is less than 12°C and in deeper water to maximize capture probability; these water temperature conditions commonly occur during November to March in the lower Mississippi River. Further, the significant effect of water temperature which varies widely over time, as well as water depth indicate that any efforts to use the catch rate to infer population trends will require the consideration of temperature and depth in standardized sampling efforts or adjustment of estimates.  相似文献   

17.
Most meroplanktonic larvae have been considered to behave as passive particles in the water column, and their dispersal determined by advection. However, larvae may influence their horizontal transport by sinking or swimming between overlying water masses. The flow conditions under which larvae influence their vertical distribution through depth regulation are presently unclear. Using an annular flume, we examined the effect of increasing flow, repeated exposure to flow, and acceleration and deceleration on the vertical distribution of 4-arm stage echinoplutei of Strongylocentrotus droebachiensis. Specifically, we generated different levels of vertical velocity and shear strengths by manipulating horizontal velocity (u). We increased and decreased flow speed incrementally from no flow (u = 0 cm s− 1) to intermediate flow (u = 0.48 cm s− 1) to high flow (u = 1.02 cm s− 1) for each of 3 cycles within each of 2 independent trials. We used a high resolution digital camera to record, and image-analysis to quantify, larval distribution. In the absence of flow, larvae swam upwards and aggregated near the surface of the flume. With increasing flow, increasing numbers of larvae were observed in the mid to low water column indicating a negative influence on larval ability to aggregate near the surface. No differences were observed between distributions in acceleration and deceleration phases of the cycles; however, results suggest that increased exposure can decrease the ability of larvae to regulate their vertical position over time. Vertical shear can result in the re-orientation of swimming larvae and likely compromised larval ability for directed swimming in our study. The threshold shear level beyond which larvae cannot regulate their vertical position is > 2 s− 1, suggesting that echinoid larvae may be more vulnerable to shear than other weak swimmers, most likely because of their shape. However, echinoid larvae can likely influence their vertical distribution within many areas in the ocean, since shears > 2 s− 1 are present only in highly turbulent regions such as fronts.  相似文献   

18.
The swimming performance of juvenile shortnose sturgeon (~16 cm TL, ~20 g), Acipenser brevirostrum, was quantified with regards to temperature (5 to 25°C) using both increased (Ucrit) and fixed velocity (endurance) tests in a laboratory setting. Sturgeons were found to show reduced Ucrit values at 5 and 10°C (25.99 and 28.86 cm s?1 respectively), with performance beginning to plateau at 15°C through 25°C (33.99 cm s?1). For the endurance protocol, fish were tested at speeds of 35, 40 and 45 cm s?1 at 5, 15 and 25°C. Performance within a single speed was similar at all temperatures, indicating the usage of anaerobic metabolism to fuel locomotion at these higher velocities. Overall, shortnose sturgeon demonstrated high tolerance towards a wide range of temperatures but showed few differences between performance levels at colder or warmer water conditions.  相似文献   

19.
1. We characterised aquatic and terrestrial invertebrate drift in six south‐western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors that affect these inputs (including season, diel period and riparian cover type), or the energetic contribution of drift to trout. 2. Eight sites were sampled in streams with four riparian cover types. Drift samples were collected at sunrise, midday and sunset; and in spring, early summer, late summer and autumn. The importance of drift for trout production was assessed using literature estimates of annual benthic production in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass of terrestrial invertebrate inputs and drifting aquatic larvae were typically highest in spring and early summer. Aquatic larval abundances were greater than terrestrial invertebrates during these seasons and terrestrial invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than aquatic larvae at midday. Terrestrial invertebrate abundances were highest in streams with open canopies and streams adjacent to pasture with limited forest canopy. 4. We estimate the combination of benthic invertebrate production and terrestrial invertebrate inputs can support 3.3–18.2 g (wet weight) m−2 year−1 of trout, which is generally lower than values considered productive [10.0–30.0 g (wet weight) m−2 year−1]. 5. Our results indicate terrestrial invertebrates can be an important energy source for trout in these streams, but trout production is still low. Any management activities that attempt to increase trout production should assess trout food resources and ensure their availability.  相似文献   

20.
Experimental measurements were made in the laboratory to determine the swimming capacities of settlement-stage fish larvae of several Mediterranean coastal species collected from the nearshore waters of Corsica, France. Critical swimming speed (Ucrit, cm s−1) was measured to provide a realistic laboratory estimate of in situ swimming speed. Morphometric traits were measured to assess potential predictors of a species’ swimming ability and, when possible, daily otolith increments were used to estimate age. Observed swimming speeds were consistent with other temperate species and demonstrated that the tested species are competent swimmers and not passive components of their environment. Morphological traits varied in their correlation with Ucrit across groups and species. Direct measurements of morphological traits were better predictors than calculated ratios. Pelagic larval duration had little relationship with swimming speed among species for which daily otolith increments were counted. In addition to expanding the database on swimming capacities of settlement-stage fish larvae in the Mediterranean Sea, this study also developed methods that simplify the assessment of larval fish swimming ability. Swimming speed data are essential for improving larval dispersal models and for predicting recruitment rates in coastal fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号