共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
Gene flow,population growth and a novel substitution rate estimate in a subtidal rock specialist,the black‐faced blenny Tripterygion delaisi (Perciformes,Blennioidei, Tripterygiidae) from the Adriatic Sea 下载免费PDF全文
Stephan Koblmüller Bernd Steinwender Sara Weiß Kristina M. Sefc 《Journal of Zoological Systematics and Evolutionary Research》2015,53(4):291-299
Population histories depend on the interplay between exogeneous and endogeneous factors. In marine species, phylogeographic and demographic patterns are often shaped by sea level fluctuations, water currents and dispersal ability. Using mitochondrial control region sequences (n = 120), we infer phylogeographic structure and historic population size changes of a common littoral fish species, the black‐faced blenny Tripterygion delaisi (Perciformes, Blennioidei, Tripterygiidae) from the north‐eastern Adriatic Sea. We find that Adriatic T. delaisi are differentiated from conspecific populations in the remaining Mediterranean, but display little phylogeographic structure within the Adriatic basin. The pattern is consistent with passive dispersal of planktonic larvae along cyclonic currents within the Adriatic Sea, but limited active dispersal of adults. Demographic reconstructions are consistent with recent population expansion, probably triggered by rising sea levels after the last glacial maximum (LGM). Placing the onset of population growth between the LGM and the warming of surface waters (18 000–13 000 years BP) and employing a novel expansion dating approach, we inferred a substitution rate of 2.61–3.61% per site per MY. Our study is one of only few existing investigations of the genetic structure of animals within the Adriatic basin and is the first to provide an estimate for mitochondrial control region substitution rates in blennioid fishes. 相似文献
3.
4.
We found low, albeit significant, genetic differentiation among turbot (Psetta maxima) in the Baltic Sea but in contrast to earlier findings we found no evidence of isolation by distance. In fact temporal variation among years in one locality exceeded spatial variation among localities. This is an unexpected result since adult turbot are sedentary and eggs are demersal at the salinities occurring in the Baltic. Our findings are most likely explained by the fact that we sampled fish that were born after/during a large influx of water to the Baltic Sea, which may have had the consequence that previously locally and relatively sedentary populations became admixed. These results suggest that populations that colonize relatively variable habitats, like the Baltic, face problems. Any adaptations to local conditions that may build up during stable periods may quickly become eroded when conditions change and/or when populations become admixed. Our results indicate that the ability of turbot to survive and reproduce at the low salinity in the Baltic is more likely due to phenotypic plasticity than a strict genetic adaptation to low salinity. 相似文献
5.
Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea 总被引:1,自引:0,他引:1
Gerrit B. Nanninga Pablo Saenz‐Agudelo Andrea Manica Michael L. Berumen 《Molecular ecology》2014,23(3):591-602
The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping‐stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll‐a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. 相似文献
6.
Silvia Livi Teresa Romeo Sabina De Innocentiis Claudia Greco Pietro Battaglia Giovanna Marino Franco Andaloro 《Zeitschrift fur angewandte Ichthyologie》2019,35(2):436-443
The Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), is an important commercial species managed as two different stocks, western and eastern Atlantic, with their spawning grounds in the Gulf of Mexico and in the Mediterranean Sea, respectively. The eastern Atlantic stock has been overexploited in the last decades, leading to the application of specific management measures introduced by the International Commission for the Atlantic Tuna (ICCAT). A clear understanding of the genetic structure of ABFT Mediterranean population should be pursued in order to support management decisions. To date the genetic studies on the Mediterranean ABFT, carried out with different molecular markers and sampling procedures, have produced unclear results. Here, we analysed ABFT samples from central and western Mediterranean Sea with mitochondrial sequences and 11 microsatellite loci to investigate, among the others, the area of the Strait of Messina, where environmental conditions seem to support a resident population of ABFT. Furthermore, genetic analyses of mitochondrial sequences were carried out including nucleotide sequences of Adriatic ABFT wild larvae retrieved from GenBank. Among the investigated areas a genetic differentiation was detected between the Strait of Messina and the Tyrrhenian Sea with microsatellite loci according to the exact G test, but not to the Bayesian analyses carried out with STRUCTURE. The analyses with mitochondrial sequences do not reveal any differentiation among sampled areas, however, a highly significant genetic divergence was observed between the Adriatic mitochondrial sequences retrieved from GenBank and the central‐western Mediterranean sequences obtained in the present work. Our results provide some evidence of population structure of Mediterranean ABFT adding pieces to a still unclear picture. 相似文献
7.
Understanding the factors that influence larval dispersal and connectivity among marine populations is critical to the conservation and sustainable management of marine resources. We assessed genetic subdivision among ten populations of copper rockfish (Sebastes caurinus) representing paired samples of outer coast and the heads of inlets in five replicate sounds on the west coast of Vancouver Island, British Columbia, using 17 microsatellite DNA loci. Overall, subdivision (FST) was low (FST = 0.031, P < 0.001), but consistently higher between paired coast and head of inlet sites (mean FST = 0.047, P < 0.001) compared to among the five coast sites (mean FST = ?0.001, P > 0.5) or among the five head of inlet sites (mean FST = 0.026, P < 0.001). Heterozygosity, allelic richness and estimates of effective population size were also lower in head of inlet sites than in coast sites. Bayesian analysis identified two genetic groups across all samples, a single genetic group among only coast samples, two genetic groups among head of inlet samples and two genetic groups within each sound analysed separately. Head of inlet copper rockfish tended to be shorter with lower condition factors and grew more slowly than coast sites fish. Reduced physical connectivity and selection against immigrants in contrasting outer coast–head of inlet environments likely contribute to the evolution of population structure of copper rockfish. Based on genetic connectivity, coast sites appear to be better served by existing marine protected areas than are head of inlet sites. 相似文献
8.
Asymmetric oceanographic processes mediate connectivity and population genetic structure,as revealed by RADseq,in a highly dispersive marine invertebrate (Parastichopus californicus) 下载免费PDF全文
Amanda Xuereb Laura Benestan Éric Normandeau Rémi M. Daigle Janelle M. R. Curtis Louis Bernatchez Marie‐Josée Fortin 《Molecular ecology》2018,27(10):2347-2364
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, p = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species. 相似文献
9.
Microsatellites have proved to be useful for the detection of weak population structure in marine fishes and other species characterized by large populations and high gene flow. None the less, uncertainty remains about the net effects of the particular mutational properties of these markers, and the wide range of locus polymorphism they exhibit, on estimates of differentiation. We examined the effect of varying microsatellite polymorphism on the magnitude of observed differentiation in a population survey of walleye pollock, Theragra chalcogramma. Genetic differentiation at 14 microsatellite loci among six putative populations from across the North Pacific Ocean and Bering Sea was weak but significant on large geographical scales and conformed to an isolation-by-distance pattern. A negative relationship was found between locus variability and the magnitude of estimated population subdivision. Estimates of F(ST) declined with locus polymorphism, resulting in diminished power to discriminate among samples, and we attribute this loss to the effects of size homoplasy. This empirical result suggests that mutation rates of some microsatellite loci are sufficiently high to limit resolution of weak genetic structure typical of many marine fishes. 相似文献
10.
José C. Báez Raimundo Real J. Mario Vargas Antonio Flores-Moya 《Phycological Research》2005,53(4):255-265
The aim of the present paper is to identify the possible existence of groups of species in the genera Audouinella (Rhodophyta), Cystoseira (Phaeophyceae) and Cladophora (Chloropyta) with significantly similar distribution patterns (chorotypes), in the western Mediterranean Sea and the Adriatic Sea. Of the 98 species studied, 59 were grouped into 11 chorotypes, whereas 39 species remained ungrouped. Thirty‐eight species were included in a generalist chorotype, whereas 6 chorotypes were monospecific. The relationships with the environmental factors that could explain the chorotypes are discussed. 相似文献
11.
Alberto F Raimondi PT Reed DC Watson JR Siegel DA Mitarai S Coelho N Serrão EA 《Molecular ecology》2011,20(12):2543-2554
Ocean currents are expected to be the predominant environmental factor influencing the dispersal of planktonic larvae or spores; yet, their characterization as predictors of marine connectivity has been hindered by a lack of understanding of how best to use oceanographic data. We used a high-resolution oceanographic model output and Lagrangian particle simulations to derive oceanographic distances (hereafter called transport times) between sites studied for Macrocystis pyrifera genetic differentiation. We build upon the classical isolation-by-distance regression model by asking how much additional variability in genetic differentiation is explained when adding transport time as predictor. We explored the extent to which gene flow is dependent upon seasonal changes in ocean circulation. Because oceanographic transport between two sites is inherently asymmetric, we also compare the explanatory power of models using the minimum or the mean transport times. Finally, we compare the direction of connectivity as estimated by the oceanographic model and genetic assignment tests. We show that the minimum transport time had higher explanatory power than the mean transport time, revealing the importance of considering asymmetry in ocean currents when modelling gene flow. Genetic assignment tests were much less effective in determining asymmetry in gene flow. Summer-derived transport times, in particular for the month of June, which had the strongest current speed, greatest asymmetry and highest spore production, resulted in the best-fit model explaining twice the variability in genetic differentiation relative to models that use geographic distance or habitat continuity. The best overall model also included habitat continuity and explained 65% of the variation in genetic differentiation among sites. 相似文献
12.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation ( = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea ( = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource. 相似文献
13.
Heidi L. Hargarten Mattias L. Johansson Daniel C. Reed Nelson C. Coelho David A. Siegel Filipe Alberto 《Journal of phycology》2020,56(1):110-120
We conducted a population genetic analysis of the stalked kelp, Pterygophora californica, in the Santa Barbara Channel, California, USA. The results were compared with previous work on the genetic differentiation of giant kelp, Macrocystis pyrifera, in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodged P. californica does not produce floating rafts with buoyant fertile sporophytes, commonly observed for M. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity in P. californica, supporting similar previous findings for M. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost's DEST, we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species, indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal of M. pyrifera at ecologically relevant spatial and temporal scales. 相似文献
14.
Seascape drivers of Macrocystis pyrifera population genetic structure in the northeast Pacific 下载免费PDF全文
Mattias L. Johansson Filipe Alberto Daniel C. Reed Peter T. Raimondi Nelson C. Coelho Mary A. Young Patrick T. Drake Christopher A. Edwards Kyle Cavanaugh Jorge Assis Lydia B. Ladah Tom W. Bell James A. Coyer David A. Siegel Ester A. Serrão 《Molecular ecology》2015,24(19):4866-4885
At small spatial and temporal scales, genetic differentiation is largely controlled by constraints on gene flow, while genetic diversity across a species' distribution is shaped on longer temporal and spatial scales. We assess the hypothesis that oceanographic transport and other seascape features explain different scales of genetic structure of giant kelp, Macrocystis pyrifera. We followed a hierarchical approach to perform a microsatellite‐based analysis of genetic differentiation in Macrocystis across its distribution in the northeast Pacific. We used seascape genetic approaches to identify large‐scale biogeographic population clusters and investigate whether they could be explained by oceanographic transport and other environmental drivers. We then modelled population genetic differentiation within clusters as a function of oceanographic transport and other environmental factors. Five geographic clusters were identified: Alaska/Canada, central California, continental Santa Barbara, California Channel Islands and mainland southern California/Baja California peninsula. The strongest break occurred between central and southern California, with mainland Santa Barbara sites forming a transition zone between the two. Breaks between clusters corresponded approximately to previously identified biogeographic breaks, but were not solely explained by oceanographic transport. An isolation‐by‐environment (IBE) pattern was observed where the northern and southern Channel Islands clustered together, but not with closer mainland sites, despite the greater distance between them. The strongest environmental association with this IBE pattern was observed with light extinction coefficient, which extends suitable habitat to deeper areas. Within clusters, we found support for previous results showing that oceanographic connectivity plays an important role in the population genetic structure of Macrocystis in the Northern hemisphere. 相似文献
15.
Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean 总被引:11,自引:0,他引:11
We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale. 相似文献
16.
BIRGITTE H. JACOBSEN MICHAEL M. HANSEN VOLKER LOESCHCKE 《Biological journal of the Linnean Society. Linnean Society of London》2005,84(1):91-101
The northern pike Esox lucius L. is a freshwater fish exhibiting pronounced population subdivision and low genetic variability. However, there is limited knowledge on phylogeographical patterns within the species, and it is not known whether the low genetic variability reflects primarily current low effective population sizes or historical bottlenecks. We analysed six microsatellite loci in ten populations from Europe and North America. Genetic variation was low, with the average number of alleles within populations ranging from 2.3 to 4.0 per locus. Genetic differentiation among populations was high (overall θST = 0.51; overall ρST = 0.50). Multidimensional scaling analysis of genetic distances between populations and spatial analysis of molecular variance suggested a single phylogeographical race within the sampled populations from northern Europe, whereas North American and southern European populations were highly distinct. A population from Ireland was monomorphic at all loci, presumably reflecting founder events associated with introduction of the species to the island in the sixteenth century. Bayesian analysis of demographic parameters showed differences in θ (a product of effective population size and mutation rate) among populations from large and small water bodies, but the relative differences in θ were smaller than expected, which could reflect population subdivision within the larger water bodies. Finally, the analyses showed drastic population declines on a time scale of several thousand years within European populations, which we ascribe to either glacial bottlenecks or postglacial founder events. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 91–101. 相似文献
17.
Current and historic gene flow of the sand goby Pomatoschistus minutus on the European Continental Shelf and in the Mediterranean Sea 总被引:2,自引:0,他引:2
E. S. GYSELS B. HELLEMANS T. PATARNELLO F. A. M. VOLCKAERT 《Biological journal of the Linnean Society. Linnean Society of London》2004,83(4):561-576
Phylogeographical patterns of the sand goby Pomatoschistus minutus (Gobiidae, Teleostei) were studied by means of sequence and single-stranded conformational polymorphism analysis of a 283-bp fragment of the cytochrome b locus of the mtDNA. A total of 228 individuals sampled at 13 sites throughout the species's distributional range revealed a moderate level of diversity and a low but significant level of overall genetic differentiation at all but one site. The goby sample from the Adriatic Sea differed in sequence by approximately 10% from the Atlantic P. minutus and is thought to belong to a cryptic species of the genus Pomatoschistus . Limited genetic differentiation with a weak pattern of isolation-by-distance was recorded throughout the distributional range of the typical P. minutus . Phylogeographical analysis suggested a contiguous range expansion in the Atlantic and Baltic basins during the Eemian and evidence for a glacial refugium in the southern North Sea during the Weichselian. In P. minutus from the western Mediterranean Sea a high number of endemic haplotypes as well as the most common Atlantic haplotype were recorded in appreciable frequencies. This might be explained by secondary contact between different mitochondrial lineages, which evolved in allopatry. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 561–576. 相似文献
18.
19.
Luciano Bani Giulia Pisa Massimiliano Luppi Giulia Spilotros Elena Fabbri Ettore Randi Valerio Orioli 《Ecology and evolution》2015,5(16):3472-3485
Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad‐leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log‐DC in PEF populations was related to log‐transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log‐EcoD, and particularly by the Log‐EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when population are strongly structured. 相似文献
20.
Maria Pia Montanari Carla Pruzzo Luigi Pane Rita R. Colwell 《FEMS microbiology ecology》1999,29(3):241-247