首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations and spatial distribution of Zn, Cu, Cd, and Pb along two landscapes including a wastewater-irrigated area and a control area were determined to assess the impact of long-term wastewater irrigation and landscape properties on heavy metal contamination. Some disturbed and undisturbed soil samples were taken from soil trenches and soil cores, located on three main landscape positions (upper slope, midslope, and lower slope) in northwestern Iran. The investigation showed that the mean concentration of the heavy metals followed the order Zn > Cu > Pb > Cd in the wastewater-irrigated soil and Pb > Zn > Cu > Cd in the control soils. On average, compared to similar positions in the control region, the wastewater-irrigated regions contained 3.0 (midslope) to 4.9 (lower slope), 2.7 (midslope) to 4.6 (lower slope), 3.3 (upper slope) to 4.1 (lower slope), and 1.7 (upper slope) to 2.6 (lower slope) times higher amounts of Zn, Cu, Cd, and Pb, respectively. Significant positive relationships (P < 0.05) were recorded between the heavy metals concentration with <0.002 mm particle-size fraction and organic matter content, the fractions linked to runoff and soil erosion. It is believed that the two soil fractions play a crucial role in the distribution of the metals along the wastewater-irrigated landscape. Despite the significant increase of heavy metals (P < 0.05) in the wastewater-irrigated soils compared with control soils, the concentration of all evaluated metals was below the maximum accepted limits (Zn < 300 mg/kg, Cu < 100 mg/kg, Cd < 5 mg/kg, and Pb < 100 mg/kg), and grouped as “not-enriched” to “moderately-enriched” categories regarding the topsoil enrichment index. Overall, the lower slope was shown to be more contaminated with the heavy metals compared to the other positions.  相似文献   

2.
Soil and wastewater treatment sludge are commonly brought together in mixtures for a variety of beneficial purposes. The mixtures contain bioacidifying (i.e., sulfur-oxidizing) microorganisms that can easily be activated through providing the appropriate substrate and environmental conditions. In this study, contaminated soil and sludge mixtures were subjected to controlled bio-acidification and the impacts of the process on the partitioning of heavy metals, nitrogen, and phosphorus were examined. Three successive bio-acidification cycles resulted in significant leaching of metals from sludge. The leaching results, expressed as fraction of total mass of metals in the sludge, averaged 67% for Cr, 96% for Ni, 24% for Zn; 16% for Cu; 23% for Cd; and 96% for Pb. Bio-acidification of the sludge also converted 28 to 45% of the organic nitrogen into ammonia and increased the soluble orthophosphates fraction of total phosphorus by approximately 18 to 20%. Bio-acidification also resulted in significant metals leaching from the contaminated soils in the soil/sludge mixtures. Soil/sludge mixtures were prepared using six soil particle sizes (less than 0.075?mm to 2.38?mm) contaminated with 22,500?mg/kg Zn, 14,000?mg/kg Pb, 1500?mg/kg Cr, 9500?mg/kg Cu, 1000?mg/kg Ni, and 1000?mg/kg Cd. The addition of metals to the soil inhibited the sulfur-oxidizing microorganisms, preventing bio-acidification in the mixtures containing 4 to 50?g soil in 130?ml sludge, and considerably slowing bio-acidification in the mixtures containing 1 to 3?g soil. Using a mixture that contained 2-g soil samples, three successive bio-acidification cycles resulted in significant cumulative metals leaching results. The leaching results, expressed as percentage of the mass of metals added to the soil, were in the range of 56 to 98% for Cr, 77 to 95% for Zn, 33 to 66% for Ni, 64 to 82% for Cu, and 10 to 33% for Pb, with the higher results in each range belonging to the larger size soil particles. On the other hand, only Cr was leached in neutralized soil samples. The results confirmed the potential for inhibition of the sulfur-oxidizing microorganisms and bio-acidification in contaminated soil/sludge mixtures, and the significant impacts of bio-acidification on the mobility of metals, nitrogen, and phosphorus. In addition, the results confirmed the potential for using controlled bioacidification for removing heavy metals from contaminated soil using the indigenous sulfur oxidizing microorganisms in sludge.  相似文献   

3.
The study was conducted at three locations in the Savinjska region of Slovenia, where soil is contaminated with heavy metals due to the zinc industry (Cinkarna Celje). In Ponikva the soil to a depth of 30 cm contains 0.8 mg kg(-1) Cd, 32.2 mg kg(-1) Pb, and 86 mg Zn kg(-1), in Medlog 1.4 mg kg(-1) Cd, 37.4 mg kg(-1) Pb, and 115 mg kg(-1) Zn and in Skofja vas 10.9 mg kg(-1) Cd, 239.7 mg kg(-1) Pb, and 1356 mg kg(-1) Zn. The pH at the selected sites was between 7.3 and 7.6. In the beginning of September 2006 two hybrids of Brassica napus L. var. napus, PR45 D01 and PR46 W31 suitable for production of biodiesel obtained from Pioneer Seeds Holding GmbH, were sown. After 96 days juvenile and after 277 days mature plants were collected. Parts of plants (root, shoot and seed) were separated and Cd, Pb, Zn, Mo, and S determined by ultra-trace ICP-MS. We compared the uptake of Cd, Pb, Zn, Mo and S in different parts of juvenile and mature plants of the two different hybrids, TF (translocation factor), BAF (bioaccumulation factor), and PP (phytoextraction potential) were calculated. The mature hybrid PR46 W31 had higher shoot/root ratio and higher PP for metals (Cd, Pb, and Zn) and lower PP for the micronutrient (Mo) and macronutrient (S) on the polluted site. The study demonstrated the potential use of oilseed rape on multiply polluted soils for production of 1st and 2nd generation biofuels. The potential restoration of degraded land could also disburden the use of agricultural land.  相似文献   

4.
研究了十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化铵(CTAB)、聚乙二醇辛基苯基醚(TritonX-100)等不同离子类型的表面活性剂对水稻土中重金属的解吸效果,并采用盆栽实验研究了上述3种表面活性剂对Zn超富集植物长柔毛委陵菜(Potentilla griffithii var. velutina)的生物量、吸收和富集重金属的影响.结果表明:CTAB对水稻土中Zn、Pb、Cd和Cu的解吸效果好于SDBS和TritonX-100,而且3种表面活性剂对各重金属的解吸率大小都为Cd>Zn>Cu>Pb.3种表面活性剂促进长柔毛委陵菜叶、柄和根的生物量增加了0.2~2.5倍,并且长柔毛委陵菜各部位的生物量大小为叶>柄>根.3种表面活性剂都增加了长柔毛委陵菜各部位对Zn、Cd吸收及其叶和柄对Pb、Cu的吸收,同时显著促进Zn、Pb、Cd和Cu从植物根部向地上部转运,从而增加了Zn、Pb、Cd和Cu在长柔毛委陵菜地上部的提取量和分布以及长柔毛委陵菜对Zn、Pb、Cd和Cu的富集能力;因此3种表面活性剂都提高了长柔毛委陵菜修复重金属污染土壤的效率.  相似文献   

5.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

6.
湖南柿竹园矿区土壤重金属含量及植物吸收特征   总被引:54,自引:1,他引:53  
矿区重金属污染十分严重,寻找和发现适合当地气候与土壤条件的重金属耐性植物是矿区植被恢复和污染土壤修复的前提。对我国湖南柿竹园有色金属矿区调查发现,该地区选矿厂的重金属污染问题普遍比尾砂库严重。选矿厂土壤砷、镉、铅、锌严重超标,尾砂库周围也受到不同程度的重金属污染。土壤重金属胁迫效应影响着植物物种分布,选矿厂物种分布较少,相比之下尾砂库的植物多样性较为丰富。柿竹园矿区植物对重金属的吸收表现为富集型(如蜈蚣草Pteris Vittata L .和苎麻Boehmerianivea (L .) Gaud.)、根部囤积型(如攀倒甑Patrinia villosa和木贼Equisetum hyemale)和规避型(如蔓出卷柏Selaginelladavidii Franch和芒草Miscanthus sinensis Andlerss)等3种类型。  相似文献   

7.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

8.
Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and the addition of lime and potassium phosphate. Certain doses of inorganic additives decreased the easily exchangeable fraction from 50% to 1%. The addition of sewage sludge caused a decrease in fraction I for Cd and Pb. In combination with the use of inorganic additives, a mobile fraction was not detected and an easily mobilisable fraction was reduced by half. For certain combinations of metals, the concentrations were detected up to a few percent. The application of sewage sludge resulted in a slight decrease in a mobile (water soluble and easily exchangeable metals) fraction of Zn, but when inorganic additives were applied, this fraction was not detected. The highest degree of immobilisation of the tested heavy metals relative to the control was achieved when using both sewage sludge and inorganic additives at an experimentally determined dose. The sequential extraction results confirmed this result. In addition, the results proved that the use of the phytostabilisation process on contaminated soils should be supported.  相似文献   

9.
山东省部分水岸带土壤重金属含量及污染评价   总被引:23,自引:0,他引:23  
为了解山东省水岸带土壤重金属的含量特征和污染状况,于2010年9月—10月采集了39个水岸带土壤样品,分析了土壤中Cr、Co、Ni、Cu、Zn、Cd、Pb和Hg的含量以及土壤的pH值、粒度和有机质,采用单因子指数法、综合指数法和潜在生态危害指数法对水岸带土壤重金属污染进行了评价,并利用相关分析和聚类分析对其来源进行了初步的解析。结果表明:水岸带土壤的pH值为5.67—8.66,主要呈碱性;有机质的平均含量为9.39 g/kg,土壤粒度主要以砂粒和粉粒为主,其平均体积百分比分别为50.33%和38.48%,平均粒径为89.69 μm;Cr、Co、Ni、Cu、Zn、Cd、Pb和Hg的平均含量为53.03 mg/kg、10.33 mg/kg、24.96 mg/kg、18.38 mg/kg、56.13 mg/kg、0.142 mg/kg、22.48 mg/kg和0.020 mg/kg。各水岸带土壤重金属的含量均符合《土壤环境质量标准》(GB15618-1995)二级标准。以山东省土壤元素背景值为评价标准,水岸带土壤重金属总体表现为轻度污染和轻微生态风险,其中Cd和Hg是主要的污染因子,其对潜在生态危害指数的平均贡献率分别为46.8% 和33.6%。洙赵新河、廖河、门楼水库和东平湖水岸带土壤重金属污染及潜在生态危害明显高于其他水源地。源解析的结果表明:水岸带土壤重金属的含量受自然源和人为源的双重影响,人为源主要包括地表径流、工业废气、垃圾和交通运输等。  相似文献   

10.
This research aims at quantifying the concentrations of heavy metals within the home environment in Amman, the capital city of Jordan, and to compare the total concentrations of indoor dusts to that of exterior dusts and soils. Housedust samples were collected from different zones of Amman. Street dust samples and garden soil samples were collected in the immediate vicinity within 10–50 m of each residence. The geometric mean concentrations of metals in the household dust were Pb, 169 mg/kg; Cd, 2.92 mg/kg; Zn, 1985 mg/kg; Cu, 133 mg/kg; Cr, 66 mg/kg; Co, 21 mg/kg; Ni, 31 mg/kg; Mn, 284 mg/kg; Be, 3.0 mg/kg; Ba, 43 mg/kg; B, 697 mg/kg and Al, 1441 mg/kg. Comparisons of household dust, garden soil and street dust were based on the same particle size fraction. Results showed housedust samples to contain higher concentrations for Pb, Zn, Cr, Ni, Cd, Cu and B, than either street dust or garden soil samples. However, the differences between Pb and Cr levels in the three different sample categories were insignificant. Enrichment factor calculations and the enrichment factor ratios indicated that patterns of enrichment of indoor dust differ from that of exterior dusts.  相似文献   

11.
Remediation of soils is vital to mitigate the negative effects of heavy metals in ecosystems. There is little information available about the metals’ phytostabilization potential of old man saltbush plants [Atriplex nummularia]. A pot experiment in a randomized complete block design was conducted to study the accumulation of heavy metals by old man saltbush plants, as affected by the application of compost and biochar. The cultivation of A. nummularia is an effective tool in immobilizing metals in the contaminated soils. The cultivation of metal-contaminated soil with A. nummularia reduced the availability of Zn, Cu, Cd, and Pb by 20%, 4%, 21%, and 28%, respectively, in comparison to the non-cultivated soil. Zn, Cu, Cd, and Pb concentrations in the aboveground parts of old man saltbush plants were 70–100, 50–80, 4–5, and 50–90 mg/kg of dry biomass. The higher Zn, Cu, Cd, and Pb concentrations were accumulated in the roots, and the lower concentrations were transferred to the shoots of old man saltbush plants. Compost reduced the concentration of Zn, Cu, Cd, and Pb in the shoots by 10%, 19%, 20%, and 6%, respectively, compared to the control soil. Biochar reduced the concentrations of Zn, Cu, and Pb in the shoots by 30%, 38%, and 44%, respectively, compared to the control. Compost had a lower effect in reducing the metals uptake as biochar. Biochar reduced the uptake of Zn, Cu, and Pb in the shoots of the tested plant by 22%, 23%, and 41%, respectively, in comparison to compost. Based on the obtained results, old man saltbush has good characteristics to be a promising candidate for phytostabilization strategies of metal-contaminated soils. Moreover, biochar is a good tool to enhance metals’ phytostablization.  相似文献   

12.
The main limiting factor for cleaning-up contaminated soils with hyperaccumulator plants is the low production of aerial biomass and the number of successive crops needed to reach the objective of remediation. The aim of this study was to contribute to the determination of a fertilisation strategy to optimise soil metal phytoextraction by Thlaspi caerulescens. A pot experiment was conducted on an agricultural soil and on a contaminated soil from the vicinity of a former Pb/Zn smelter. The nitrogen (N) treatment consisted of 4 levels (0, 11, 21.5 and 31 mg N kg(-1) dry soil (DS)) added as NH4NO3. The highest N treatment was combined with 4 levels of phosphorus (P) (0, 20, 40 and 80 mg P kg(-1) DS as KH2PO4) and sulfur (S) additions (0, 10, 20 and 30 mg S kg(-1) DS as MgSO4). The highest N fertilisation contributed significantly to enhance biomass production of T. caerulescens and to decrease the concentration of Cd and Zn in the biomass. At constant N addition, P supply did not affect metal extraction by T. caerulescens but negatively affected plant health. Sulfur supply slightly increased phytoextraction of Cd. Our results show that N and S fertilisation might interact but further investigations on the effect of such interaction on Cd extraction efficiency are needed.  相似文献   

13.
Sedum alfredii Hance is a newly reported zinc (Zn) and cadmium (Cd) hyperaccumulator native to China. In this study,four populations of S. alfredii were collected from Yejiwei (YJW), Jinchuantang (JCT) and Qiaokou (QK) lead (Pb)/Zn mines located in Hunan Province as well as Quzhou (QZ) Pb/Zn mine located in Zhejiang Province for exploring the intraspecies difference of this plant in metal accumulation. Although they grew in the Pb/Zn spoils with relatively similar levels of Zn,Cd and Pb, remarkable differences among the four populations in tissue heavy metal concentrations were observed. The shoot Zn concentration of QZ population (11 116 mg/kg) was highest and nearly five times higher than that of the JCT population (1930 mg/kg). Furthermore, the shoot Cd concentration observed in the QZ population (1 090 mg/kg) was also highest and 144 times higher than that found in the JCT population (7.5 mg/kg). As for Pb concentrations In the shoot of different populations, a fourfold difference between the highest and the lowest was also found. Such difference on metal accumulation was opulation-specific and may be significantly explained by differences in the soil properties such as pH, organic matter (OM), and electrical conductivity (EC). Taking biomass and metal concentration in plants into consideration, the QZ, YJW and QK populations may have high potential for Zn phytoremediation, the QZ population may have the highest potential in Cd phytoremediation, and the QK population may be the most useful in Pb phytoremediation.  相似文献   

14.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

15.
强还原过程对设施菜地土壤重金属形态转化的影响   总被引:1,自引:0,他引:1  
设施菜地由于污水灌溉、粪肥施用等导致重金属污染.本文通过土柱淹水同时添加玉米秸秆培养和后期通水淋洗,研究强还原法对设施土壤重金属(Cd、Cu、Pb和Zn)形态转化的影响.结果表明: 强还原处理使土壤pH显著降低,玉米秸秆处理变化更显著;土壤氧化还原电位(Eh)迅速下降至-280 mV左右.玉米秸秆处理可以促进土壤中Cd、Cu、Pb和Zn活化,第9天土壤中有机物及硫化物结合态和残渣态Cd、Cu、Pb和Zn含量比重下降;至15 d培养结束,土壤中4种重金属含量较对照分别减少18.1%、19.0%、16.1%和15.7%.玉米秸秆处理可以增加土壤中Cd和Zn的溶出量,但是Cu的溶出量减少;胶体结合态Cd和Pb含量较对照增加、Cu较对照显著减少、Zn没有显著变化.强还原可以引起设施土壤重金属活化,提高蔬菜积累重金属的风险,而且其随土壤水分的运移可能导致水体的污染.  相似文献   

16.
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.  相似文献   

17.
通过盆栽试验,评价栎属植物在铅锌尾矿中的生长响应及植被恢复前景.分析比较了覆瓦栎、猩红栎、樱皮栎、舒玛栎和白栎5种栎树幼苗在铅锌矿砂中生长30个月后的生物量、根系形态及其对营养元素和重金属的吸收及转移特征.结果表明: 5种栎树在矿砂中均能生长,其中,猩红栎和白栎的生物量较对照有下降趋势,其他3种栎树的生长与对照相比无显著差异;栎树根系生物量均较对照有不同程度增加(猩红栎除外),且仅猩红栎侧根形态学参数较对照有所减少.重金属胁迫下,栎树根系和茎中营养元素浓度较对照无显著变化.5种栎树体内重金属浓度均较低,且其生物富集系数和转移系数均小于1.但樱皮栎叶片和茎中Cd浓度分别为22.4和15.1 mg·kg-1,转移系数为2.3,显著高于其他4种栎树.除猩红栎以外,其他参试栎树均可作为有潜力的污染土壤修复树种.其中舒玛栎的耐性较高、生物富集系数和转移系数较低,是适合在尾矿区造林和生态修复的优选树种.  相似文献   

18.
铜尾矿区土壤与凤丹植株重金属富集研究   总被引:7,自引:0,他引:7  
对安徽铜陵铜尾矿区凤丹种植地的土壤和凤丹中重金属污染状况进行了研究,结果表明,尾矿库区种植地极端贫瘠,有机质含量仅1.1~3.4g·kg^-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达587.43~1176.44mg·kg^-1,Cd含量达3.08~5.16mg·kg^-1,约达国家土壤二级标准的10倍,凤丹各部位的Cu、CA和Pb含量均超过了药用植物的限量标准,尤其是根皮部位Cu含量达31.50~64.00mg·kg^-1,Cd含量达0.98~1.45mg·kg^-1,超出标准1.6~3.6倍,表明种植地和凤丹都受到严重污染.凤丹不同部位中的Zn、Cd、Pb和Cu分别以茎、叶、叶和根皮中的含量最高.凤丹对Cd、Zn的富集比Cu和Pb高,但在根皮中的富集系数均较小。  相似文献   

19.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

20.
The Qingshan district of Wuhan City is a typical Chinese industrial area. An increase in heavy metal pollution in the region's soil, due to industrialization and urbanization, has become a serious environmental problem. Surface soil samples from 155 sites were collected and analyzed. The median concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in soil were 2.3, 46.2, 24.3, 28.2, and 86.8 mg/kg, respectively. Principal component analysis coupled with hierarchical cluster analysis showed that (1) in residential and industrial areas, Pb, Cu, and Zn concentrations were mainly affected by industrial emissions and traffic emissions, whereas in agricultural areas Cu and Zn were less affected by industrial emission and traffic emission, whereas Pb was affected by agricultural activities; and (2) Cd originated from a combination of sources, including industrial activities, traffic emission, and hypergene geochemical characteristics. The integrated pollution index varied from 1.1 to 16.6 with a mean of 3.9, and 70.6% of the area is extremely contaminated, 28.1% is heavily contaminated, and the remainder is moderately contaminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号