首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
A microorganism, strain M 102, capable of degrading aspergillic acid (AA), was first isolated from a soil sample in a drainage ditch and was identified as Trichoderma koningii Oudemans. This fungus degraded AA, but not hydroxyaspergillic acid (HAA) or deoxyaspergillic acid (DAA). The AA-degrading ability of M 102 was induced by incubation with AA but not with HAA or DAA. AA-degradation activity was found in a crude enzyme prepared from the mycelia induced by AA; this AA degradation reaction required NAD(P)H and oxygen.  相似文献   

2.
Isolation and identification of the degradation products of aspergillic acid, a secondary metabolite of fungi, by Trichoderma koningii M 102 were undertaken. 14C-labeling experiments indicated that aspergillic acid was broken-down to a water-soluble degradation product and a chloroform-soluble one. Consequently, leucine and a new microbial metabolite, 2-hydroxyimino-3-methyl-1-pentanol, were isolated and identified as the degradation products formed by cleavage of the pyrazine ring of aspergillic acid by T. koningii M 102.  相似文献   

3.
The aspergillic acid degrading enzyme (ADE) that catalyzes the cleavage of the pyrazine ring in aspergillic acid (AA, l-hydroxy-3-isobutyl-6-sec-butyl-2-pyrazinone) was purified to electrophoretic homogeneity from extracts of Trichoderma koningii ATCC 76666. ADE was a homodimeric protein with a molecular mass of 112kDa, contained lmol of FAD per mol of subunit, and required NAD(P)H and molecular oxygen for its activity. ADE had an isoelectric point of around 5.3, and an optimum pH of 7.0–8.0. p-Chloromercuribenzoate and HgCl2 completely inhibited ADE activity, while metal chelating reagents, α, α′-dipyridyl and o-phenanthroline, were not inhibitors. The substrate specificity among AA-related compounds was that hydroxyaspergillic acid was a poor substrate (16% of the activity for AA) and deoxyaspergillic acid did not serve as a substrate.  相似文献   

4.
Betaine aldehyde dehydrogenase from Xanthomonas translucens was purified to apparent homogeneity by ammonium sulfate fractionation, followed by ion-exchange, butyl-Toyopearl and gel filtration chromatography. The amino acid composition and the N-terminal sequence of 35 amino acid residues were determined. The enzyme was found to be a tetramer with identical 50 kDa subunits. Both NAD and NADP could be used as a cofactor for the enzyme and Km values for NAD and NADP were 70 μM and 50 μM, respectively. The enzyme was highly specific for betaine aldehyde and the Km value for betaine aldehyde was 0.19 mM.  相似文献   

5.
An O-methyltransferase which catalyses the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified ca 70-fold from root nodules of alfalfa. The enzyme also catalysed the methylation of 5-hydroxyferulic acid. Chromatography on 1,6-diaminohexane agarose (AH-Sepharose-4B) linked with S-adenosyl-l-homocysteine (SAH) gave 35% recovery of enzyme activity. The Km values for caffeic acid and S-adenosyl-l-methionine were 58 and 4.1 μM, respectively. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine with a Ki of 0.44 μM. The MW of the enzyme was ca 103 000 determined by gel filtration chromatography.  相似文献   

6.
Some properties of a preparation of an enzyme, lunularic acid decarboxylase, from the liverwort Conocephalum conicum are described. The enzyme is normally bound and could be solubilized with Triton X-100; at least some of the bound decarboxylase activity appears to be associated with chloroplasts. For lunularic acid the enzyme has Km 8.7 × 10?5 M (pH 7.8 and 30°). Some substrate analogues have been tested but no other substrate was found. Pinosylvic acid is a competitive inhibitor for the enzyme, Ki 1.2 × 10?4 M (pH 7.8 and 30°). No product inhibition was observed. Lunularic acid decarboxylase activity has also been observed with a cell-free system from Lunularia cruciata.  相似文献   

7.
Morphological changes induced in fungi by antibiotics   总被引:1,自引:0,他引:1  
In tests of 31 antibiotics, 29 inhibited growth ofBotrytis cinerea and of these, 18 induced morphological changes. Terminal and lateral branching of the hyphae was induced by actinomycin D, aspergillic acid, citrinin, cyanein, cycloheximide, desertomycin and polyene antibiotics. Curling of the hyphae was induced by griseofulvin and narrowing of the hyphae by citrinin. Some antibiotics at different concentrations produced several types of morphological changes. For example, aspergillic acid, desertomycin and flavofungin also induced terminal bulging of the hyphae. Growth of the dimorphic fungusPaecilomyces viridis was inhibited by 24 antibioties, nine of which induced morphological changes. Branching of the hyphae was induced by azalomycin F, citrinin, eyanein, desertomycin, patulin, rugulosin and trichothecin. Griseofulvin had a curling effect. Except for rugulosin, the above antibiotics, in higher concentrations, induced yeast-like growth ofPaecilomyces viridis. Morphological changes were also induced by inhibitors of RNA and protein synthesis and by antibiotics injuring the cell membranes. Antibiotics with different mechanisms of action induced similar morphological changes.  相似文献   

8.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

9.
The partial purification of shikimate dehydrogenase (SDH) from tomato fruit was achieved by precipitation with ammonium sulphate, and chromatography on DEAE-cellulose and hydroxyapatite. The enzyme has a MW of 73000, shows an optimum at pH 9.1 and Km values of 3.8 × 10?5 M and 1.0 × 10?5 M with shikimic acid and NADP as substrates. NADP could not be replaced by NAD. The tomato enzyme is competitively inhibited by protocatechuic acid with a Ki value of 7.7 × 10?5 M. On the other hand, cinnamic acid derivatives and 2-hydroxybenzoic acid were ineffective. At 50° for 5 min the SDH is inactivated by 85%. The activity was inhibited by pCMB and N-ethylmaleimide, suggesting a requirement for SH groups. The inactivation plot of oxidation by pCMB was biphasic, and NADP decreased the reactivity of sulphydryl groups to the reagent. The activation energy was found to be 14.2kcal/mol. The properties of the SDH are discussed in relation to the enzymes from other sources.  相似文献   

10.
The bacteriolytic enzyme with an isoelectric point of 9.5 that is produced by all strains of Staphylococcus aureus investigated was purified from strain M18 (Wadström & Hisatsune, 1970). This enzyme released reducing groups from cell walls of Micrococcus lysodeikticus and was thus shown to be a bacteriolytic hexosaminidase. Although dinitrophenylation and acid hydrolysis of cell walls hydrolysed by a partially purified enzyme gave DNP-alanine and DNP-glycine from staphylococcal peptidoglycan, which indicated the presence of a peptidase and probably also an N-acetylmuramyl-l-alanine amidase, hydrolysis of cell walls by the extensively purified enzyme did not give any DNP-amino acids. The enzyme digest was purified by Amberlite CG-120 and Sephadex G-10 chromatography. Reduction by sodium borohydride of the disaccharide obtained was followed by acid hydrolysis and paper chromatography. Glucosamine completely disappeared after this treatment and a new spot identical with glucosaminitol appeared. The muramic acid spot remained unchanged. The purified enzyme was found to be devoid of exo-β-N-acetylglucosaminidase activity. These results are compatible with the action of a bacteriolytic endo-β-N-acetylglucosaminidase. It is also proposed that this enzyme is probably identical with the staphylococcal lysozyme. The mode of action of this has not previously been investigated.  相似文献   

11.
Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.  相似文献   

12.
An extracellular acid phosphatase secreted into the medium during growth of Tetrahymena pryiformis strain W was purified about 900-fold by (NH4)2SO4 precipitation, gel filtration and ion exchange chromatography. The purified acid phosphatase was homogenous as judged by polycrylamide gel electrophoresis and was found to be a glycoprotein. Its carbohydrate content was about 10% of the total protein content. The native enzyme has a molecular weight of 120 000 as determined by gel filtration and 61 000 as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The acid phosphatase thus appears to consist of two subunits of equal size. The amino acid analysis revealed a relatively high content of asparic acid, glutamic acid and leucine. The purified acid phosphatase from Tetrahymena had a rather broad substrate specificity; it hydrolyzed organic phosphates, nucleotide phosphates and hexose phosphates, but had no diesterase activity. The Km values determined with p-nitrophenyl phosphate, adenosine 5′-phosphate and glucose 6-phosphate were 3.1·10?4 M, 3.9·10?4 M and 1.6·10?3 M, respectively. The optima pH for hydrolysis of three substrates were similar (pH 4.6). Hg2+ and Fe3+ at 5 mM were inhibitory for the purified acid phosphatase, and fluoride, L-(+)-tartaric acid and molybdate also inhibited its cavity at low concentrations. The enzyme was competitively inhibited by NaF (Ki=5.6·10?4 M) and by L-(+)-tartaric acid (Ki = 8.5·10?5 M), while it was inhibited noncompetitively by molybdate Ki = 5.0·10?6 M). The extracellular acid phosphatase purified from Tetrahymena was indistinguishable from the intracellular enzyme in optimum pH, Km, thermal stability and inhibition by NaF.  相似文献   

13.
S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10–250 μM the Km for methionine was 20 μM, and this changed to 200 μM for the range 0.5–5.0 mM. In the range 10–250 μM the Km for ATP was 53 μM, and this changed to 1.75 mM for the range 0.5–5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 μM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-α-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration ≈ 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism.  相似文献   

14.
2-Mercaptoethanesulfonic acid (coenzyme M), or a derivative of it, and a yellow chromophore, known as the nickel-containing tetrapyrrole factor F430, occur in the prosthetic group of methylcoenzyme M reductase in an equimolar amount, and bound to each other; this enzyme catalyzes the final step of methane production. The prosthetic group, which is called coenzyme MF430, was isolated from the purified enzyme and was extracted from cells. The presence of coenzyme M was confirmed by a bioassay using Methanobrevibacter ruminantium and by the use of chemical and physicochemical analyses.  相似文献   

15.
The metabolism of vulpinic acid by an unclassified soil micro-organism was studied. A new compound, 2,5-diphenyl-3-hydroxy-4-oxo-2-hexendioic acid (DHOHA) was isolated from the reaction mixture of a cell-free preparation and pulvinic acid. The existence of a hydrolase which catalyses the conversion of vulpinic acid to pulvinic acid was detected in cell-free preparation, and an inducible lactone hydrolase capable of converting pulvinic acid to DHOHA was purified 130-fold and characterized. This enzyme had a MW of ca 34 000, a Km for pulvinic acid at pH optimum (pH 7.0) less than 10 ? 6 M, pI = 5.0, and was inhibited by p-chloromercuriphenylsulfonate and diethylpyrocarbonate. The enzyme was highly specific for pulvinic acid. The initial degradative steps proposed for this organism are vulpinic acid → pulvinic acid → DHOHA.  相似文献   

16.
A new multispecific cytosine-C5-DNA-methyltransferase (C5-MTase), M.BssHII, was identified inBacillus stearothermophilusH3. The M.BssHII gene was cloned and sequenced. The amino acid sequence deduced shows the characteristic building plan of a C5-MTase. By sequencing bisulfite- treated DNA methylated by M.BssHII and by restriction enzyme analysis, we defined the following methylation targets of M.BssHII: ACGCGT/ CCGCGG (MluI/SacII), PuGCGCPy (HaeII), PuCCGGPy (Cfr10I) and GCGCGC (BssHII). The relative location of the specificity determinants in the C5-MTase was derived from the analysis of M.BssHII derivatives carrying deletions within the variable region “V” and chimeric C5-Mtases constructed between M.BssHII and the related monospecific enzyme M.ψ3TII. Four of the M.BssHII specificities (MluI,SacII,Cfr10I andBssHII) could be associated with amino acid segments within the variable region “V”. The determinant forHaeII activity had to be assigned to sequences defining the enzyme core, the first example of a C5-MTase in which a sequence-specific methylation potential is mediated by structures outside of the variable region. Another intriguing result came from the analysis of one particular chimera made between M.BssHII and M.ψ3TII. This construct showed a relaxation of the methylation capacity, both with respect to the target recognized and the targeting of methylation within this sequence.  相似文献   

17.
The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi.  相似文献   

18.
Methanobacterium bryantii contains a single electrophoretically discernible superoxide dismutase, which constitutes 0.4% of the extractable protein. This enzyme has been purified to electrophoretic and ultracentrifugal homogeneity. It appears to be a tetramer. The subunits were tenaciously, but noncovalently bonded and were of identical size. The molecular weight of the enzyme was found to be 91,000 ± 2000. The specific activity of this enzyme was identical to that previously noted for the corresponding enzyme from Escherichia coli. The enzyme contained 2.7 atoms of Fe, 1.7 atoms of Zn, and less than 0.2 atoms Mn per tetramer. Its amino acid composition placed this enzyme with the other Mn- and Fe-containing superoxide dismutases. The M. bryantii enzyme was also similar to previously described Fe-containing superoxide dismutases in its optical and electron paramagnetic resonance spectra and in its susceptibility to inactivation by H2O2. The M. bryantii enzyme was ininhibited by N3?, but was less sensitive towards this inhibitor than other iron-containing superoxide dismutases.  相似文献   

19.
Penicillin G acylase is the key enzyme used in the industrial production of β-lactam antibiotics. This enzyme hydrolyzes penicillin G and related β-lactam antibiotics releasing 6-aminopenicillanic acid, which is an intermediate in the production of semisynthetic penicillins. To improve the enzymatic activity of Escherichia coli penicillin acylase, sequential rounds of error-prone polymerase chain reaction were applied to the E. coli pac gene. After the second round of evolution, the best mutant M2234 with enhanced activity was selected and analyzed. DNA sequence analyses of M2234 revealed that one amino acid residue (K297I), located far from the center of the catalytic pocket, was changed. This mutant (M2234) has a specific activity 4.0 times higher than the parent enzyme and also displayed higher stability at pH 10.  相似文献   

20.
Modification of maize δ-aminolevulinic acid dehydratase (ALAD) by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation showed saturation kinetics with a half inactivation time at saturating DEP equal to 0.3 min and KDEP  0.3 mM. Substrate δ-aminolevulinic acid (ALA) and competitive inhibitor levulinic acid protected against inactivation, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.8 M hydroxylamine. Most of the activity lost by DEP treatment could be restored after treatment with 0.8 M hydroxylamine. The results suggest that DEP modifies 7.4 residues/mole of the enzyme. These histidine residues are essential for catalysis by ALAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号