首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alpha-bag cell peptide [α-BCP (Ala-Pro-Arg-Leu-Arg-Phe-Tyr-Ser-Leu)] is a neurotransmitter that mediates bag cell-induced inhibition of left-upper-quadrant (LUQ) neurons L2, L3, L4, and L6 in the abdominal ganglion of Aplysia. Our recent biochemical studies have shown that α-BCP[1–9] is cleaved into α-BCP[1–2], [3–9], [1–5], [6–9], and [7–9] by a combination of three distinct peptidase activities located within the extracellular spaces of the CNS: A diaminopeptidase-IV (DAP-IV)-like enzyme cleaves α-BCP[1–9] at the 2–3 peptide bond; a neutral metalloendopeptidase (NEP)-like enzyme cleaves either α-BCP[1–9] or α-BCP[3–9] at the 5–6 bond; an aminopeptidase M-II (APM-II)-like enzyme cleaves α-BCP[6–9] at the 6–7 bond, but cleaves neither α-BCP[1–9], nor the other ganglionic peptidase products. To further understand the manner in which α-BCP is inactivated after release, that is loses its electro-physiological activity, we studied its structure-activity relationship by recording intracellularly from LUQ neurons in isolated abdominal ganglia that were arterially perfused with peptides dissolved in artificial sea water. The effects of α-BCP[1–9] and 15 of its fragments ([1–8], [1–7], [1–6], [1–5], [2–9], [3–9], [3–8], [6–9], [7–9], [8–9], [6–7], [6–8], [1–2], Phe, Tyr) indicated that the sequence Phe6-Tyr7 was both necessary and sufficient to produce LUQ inhibitory activity. The combined results of our electrophysiological and biochemical studies strongly suggest that α-BCP[1–9] is inactivated by the serial actions of the NEP-like and APM-II-like peptidases; that is, the NEP-like enzyme yields an electro-physiologically active product, α-BCP[6–9], that is cleaved by the APM-II-like enzyme to yield inactive α-BCP[7–9]. Furthermore, because α-BCP[6–9] is more active than α-BCP[1–9], cleavage by the NEP-like enzyme potentiates α-BCP's activity. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
1. Five species of Mytilus inhibitory peptides, MIP1–5, were isolated from acetone extracts of the anterior byssus retractor muscle (ABRM) of Mytilus edulis. MIP1 and MIP2 were shown to be S2-MIP and A2-MIP, respectively, first isolated from the pedal ganglia of the animal.2. All the five peptides had a common C-terminal structure of -Pro-Xaa-Phe-Val-NH2, which was shown to be important for their biological activity.3. The five MIPs showed similar inhibitory effects on contractions of the ABRM but did not affect catch tension and its relaxation.4. In addition to the MIPs, catch-relaxing peptide (CARP) was also found in the ABRM.  相似文献   

3.
1. Intracellular recordings were made from identified neurones in the suboesophageal ganglia of Helix aspersa. Seven neuropeptides were tested for activity and their actions compared with acetylcholine and FMRFamide.2. Three peptides isolated from nematodes, AF-1, AF-2 and PAN-1 had mainly inhibitory effects with thresholds of around 1 nM. This inhibition was due to an increase in potassium conductance.3. The molluscan neuropeptides LSSFVRIamide, CARP and ACEP-1 were all active on certain neurones; the first two showed only inhibitory effects while ACEP-1 was mainly excitatory. The thresholds in each case were 0.1–10 μM. When norleucine replaced methionine in CARP, the potency was reduced by at least 100 times.4. The echinoderm peptide, SALMF-1, only excited neurones but with a very low threshold, around 1.0 fM.5. There was no obvious correlation between the action of these peptides and either acetylcholine or FMRFamide.  相似文献   

4.
  • 1.1. Morphological and pharmacological investigations were made of two giant neurons, RPeNLN (right pedal nerve large neuron) and LPeNLN (left pedal nerve large neuron), situated symmetrically on the anterior surface of the pedal ganglia of an African giant snail (Achatina fulica Férussac).
  • 2.]2. The two neurons (about 250–300 μm in diameter) were the largest ones identified in the ganglia of the snail species. The axonal pathways of the two neurons were symmetrical; of their four main axonal branches, the three main branches innervated the ipsilateral pedal nerves, whereas the last main branch projected to the contralateral pedal nerves.
  • 3.]3. The pharmacological features of the two neurons were very similar. Both were inhibited markedly by dopamine [minimum effective concentrations (MECs): 3 × 10−6-10−5M], dl-octopamine (MECs: 2 × 10−6-2 × 10−5M), 5-hydroxytryptamine (MEC: 3 × 10−6M), GABA (MEC: 3 × 10−5 M), l-homocysteic acid (MECs: 3 × 10−5-10-10−4M) and erythro-β-hydroxy-l-ghitanuc acid (MEC: 3× 10−5M). Acetylcholine showed varied effects, either excitatory or inhibitory, on the two neurons examined. No substances were found to have any marked excitatory effects on the neurons.
  相似文献   

5.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

6.
Summary Involvement of neuropeptides in the regulation of cardiac activity in a prosobranch mollusc, Rapana thomasiana, was studied physiologically as well as immunohistochemically. A catch-relaxing peptide (CARP) showed strong inhibitory effects on the heart with a lower threshold than acetylcholine. The action of CARP was in contrast to that of another neuropeptide, FMRFamide, which has previously been shown to enhance the heart beat. Benzoquinonium blocked the effects of acetylcholine and stimulation of right cardiac nerves 1 and 3b, but not those of CARP, suggesting that the effects of nerve stimulation are mainly due to the release of acetylcholine. Immunohistochemical examinations demonstrated that FMRFamide-like and CARP-like immunoreactive neurons are distributed in the visceral ganglia. Although a neuron appeared to show weak immunoreactivity to both antisera, evidence for the coexistence of peptides in a single neuron was not exhibited. Positive immunoreactivity to FMRFamide and CARP antisera also appeared in right cardiac nerves 1 and 3. In the heart, FMRFamide- and CARP-like immunoreactive fibers were restricted to the atrium and the aortic end of the ventricle, consistent with the morphological observation of innervation. The present results suggest that FMRFamide- and CARP-like peptides are involved in regulating the heart beat.  相似文献   

7.
Rick Hochberg 《Zoomorphology》2009,128(2):169-181
The platyhelminth reproductive system is a complex series of canals, glands, and sclerotic components that figure prominently in our understanding of reproductive physiology, taxonomy, and evolution of the Platyhelminthes. Yet, there is limited information on its innervation, especially for free-living species of Rhabdocoela, the most speciose and ecologically diverse assemblage. Here, innervation of the reproductive system in the common marine kalyptorhynch, Gyratrix hermaphroditus, is studied using confocal laser scanning microscopy (CLSM), fluorescent phalloidin, and antibodies to serotonin (5HT) and small cardioactive peptide b (SCPb). Results show that portions of the female atrial system (uterus, female gonopore) are innervated by peptidergic (SCPb) neurons that may function to control muscles involved in egg movement. In contrast, portions of the male atrial system (male atrium, male gonopore) are innervated by both peptidergic and serotonergic neurons. These neurons form a complex series of hoops around the musculature of the male atrium that houses prostate stylet type II. It is hypothesized that 5HT is the primary myoexcitatory neurotransmitter, and that it acts either synergistically with SCPb to trigger muscle contractions of the male atrium and protract the copulatory stylet, or that SCPb plays an inhibitory role during contraction of the male atrium. A comparison of the distribution of peptidergic and serotonergic neurons in G. hermaphroditus with other free-living species and parasitic rhabdocoels (Neodermata) reveals similarities in innervation of comparable (though probably not homologous) reproductive organs. These results suggest that the atrial systems of phylogenetically diverse species may share a common neuronal physiology despite their structural differences and potential independent evolutionary origins within the Platyhelminthes.  相似文献   

8.
The present study was undertaken to gain insight into the associations of mercury(II) with dicysteinyl tripeptides in buffered media at pH 7.4. We investigated the effects of increasing the distance between cysteinyl residues on mercury(II) associations and complex formations. The peptide–mercury(II) formation constants and their associated thermodynamic parameters in 3-(N-morpholino)propanesulfonic acid (MOPS) buffered solutions were evaluated by isothermal titration calorimetry. Complexes formed in different relative ratios of mercury(II) to cysteinyl peptides in ammonium formate buffered solutions were characterized by LTQ Orbitrap mass spectrometry. The results from these studies show that n-alkyl dicysteinyl peptides (CP 14), and an aryl dicysteinyl peptide (CP 5) can serve as effective “double anchors” to accommodate the coordination sites of mercury(II) to form predominantly one-to-one Hg(peptide) complexes. The aryl dicysteinyl peptide (CP 5) also forms the two-to-two Hg2(peptide)2 complex. In the presence of excess peptide, Hg(peptide)2 complexes are also detected. Notably, increasing the distance between the ligating groups or “anchor points” in CP 15 does not significantly affect their affinity for mercury(II). However, the enthalpy change (ΔH) values (ΔH1  −91 kJ mol−1 and ΔH2  −66 kJ mol−1) for complex formation between CP 4 and 5 with mercury(II) are about one and a half times larger than the related values for CP 1, 2 and 3H1  −66 kJ mol−1 and ΔH2  46 kJ mol−1). The corresponding entropy change (ΔS) values (ΔS1  −129 J K−1 mol−1 and ΔS2  −116 J K−1 mol−1) of the structurally larger dicysteinyl peptides CP 4 and 5 are less entropically favorable than for CP 1, 2 and 3S1  −48 J K−1 mol−1 and ΔS2  −44 J K−1 mol−1). Generally, these associations result in a decrease in entropy, indicating that these peptide–mercury complexes potentially form highly ordered structures. The results from this study show that dicysteinyl tripeptides are effective in binding mercury(II) and they are promising motifs for the design of multi-cysteinyl peptides for binding more than one mercury(II) ion per peptide.  相似文献   

9.
The bag cell neurons of the marine mollusk Aplysia are part of a neural system that utilizes four neuropeptides as neurotansmitters. The peptides, derived from the egglaying hormone/bag cell peptide (ELH/BCP) precursor protein, are released during a 20-min burst discharge of the bag cells and produce several types of responses in various abdominal ganglion neurons. In the identified neurons L3 and L6, bag cell activity produces prolonged inhibition that lasts for more than 2 h. One of the bag cell peptides, alpha-BCP, mediates an early component of the inhibition in these neurons. To identify the co-transmitter mediating the prolonged component of inhibition, we purified material from an acid extract of abdominal ganglia using molecular sizing high-pressure liquid chromatography (HPLC) on TSK 250-125 followed by two steps of reverse-phase HPLC on C4 or C18. We isolated three inhibitory factors that mimic the prolonged component of inhibition. Mass spectroscopy and partial amino acid sequence analysis indicate one factor is ELH [2-36], that is, ELH that lacks the first, N-terminal amino acid. This inhibitory activity was similar in potency to that of ELH and is the first to be described for an ELH related peptide. The two other factors were approximately 3,300 and 4,700 Da and were effective at 10- and 50-fold lower concentration, respectively, than ELH or its fragment. Amino acid composition analysis suggests that they are not derived from the ELH/BCP precursor protein. The 4,700 Da factor is effective at the lowest concentration and produces an effect that lasts as long as 100 min. Therefore, it is the best candidate for the true inhibitory transmitter. Because the inhibited neurons in nervate the kidney, the function of prolonged inhibition may be to regulate kidney function during egg laying.  相似文献   

10.
  • 1.1. Effects of the following peptides at 10−4 M on identifiable giant neurones of Achatina fulica Férussac were examined: physalaemin, eledoisin, bradykinin, neurokinin A, neurokinin B, neuromedin B, gastrin releasing peptide decapeptide (neuromedin C), gastrin releasing peptide (14–27), cholecystokinin tetrapeptide, cholecystokinin octapeptide, thyrotropin releasing hormone, Arg-vasotocin, γ-melanocyte stimulating hormone.
  • 2.2. The six neurones tested were as follows: PON (periodically oscillating neurone), TAN (tonically autoactive neurone), RAPN (right anterior pallial neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone) and d-VLN (dorsal-visceral large neurone).
  • 3.3. Of the peptides examined, only Arg-vasotocin at 10−4 M produced the excitatory effects on PON, VIN and d-VLN. Physalaemin showed slight inhibitory effects on TAN; this substance was sometimes almost ineffective on the neurone.
  • 4.4. The other peptides examined were completely ineffective on all of the neurones tested.
  相似文献   

11.
Corals and other biomineralizing organisms use proteins and other molecules to form different crystalline polymorphs and biomineral structures. In corals, it’s been suggested that proteins such as Coral Acid Rich Proteins (CARPs) play a major role in the polymorph selection of their calcium carbonate (CaCO3) aragonite exoskeleton. To date, four CARPs (1–4) have been characterized: each with a different amino acid composition and different temporal and spatial expression patterns during coral developmental stages. Interestingly, CARP3 is able to alter crystallization pathways in vitro, yet its function in this process remains enigmatic. To better understand the CARP3 function, we performed two independent in vitro CaCO3 polymorph selection experiments using purified recombinant CARP3 at different concentrations and at low or zero Mg2+ concentration. Our results show that, in the absence of Mg2+, CARP3 selects for the vaterite polymorph and inhibits calcite. However, in the presence of a low concentration of Mg2+ and CARP3 both Mg-calcite and vaterite are formed, with the relative amount of Mg-calcite increasing with CARP3 concentration. In all conditions, CARP3 did not select for the aragonite polymorph, which is the polymorph associated to CARP3 in vivo, even in the presence of Mg2+ (Mg:Ca molar ratio equal to 1). These results further emphasize the importance of Mg:Ca molar ratios similar to that in seawater (Mg:Ca equal to 5) and the activity of the biological system in a aragonite polymorph selection in coral skeleton formation.  相似文献   

12.
THE FINE STRUCTURE OF INHIBITORY SYNAPSES IN THE CRAYFISH   总被引:5,自引:5,他引:0       下载免费PDF全文
Physiological investigations have shown that the synaptic input to the sensory neuron of the stretch receptor in the abdominal muscles of the crayfish is purely inhibitory. This neuron was chosen, therefore, as a site in which to study the fine structure of inhibitory synaptic endings. It was hoped that this fine structure might (a) provide a morphological prototype for the study of more complex synaptic systems and (b) reflect the inhibitory mechanisms. Stretch receptors were fixed in situ in buffered OsO4, dehydrated, and embedded in Araldite. Both cross and longitudinal sections were examined after staining with phosphotungstic acid. The inhibitory endings were easily identified by their great similarity to previously described excitatory endings. Small circular profiles (synaptic vesicles) about 460 A in diameter and an accumulation of mitochondria were consistently observed within the presynaptic endings. An increased osmiophilia of pre- and postsynaptic membranes, where they were in apposition, was also seen. The only observed difference between these inhibitory endings and excitatory endings, described by other authors, was the variable presence of a latticework of 230 A tubules in the connective tissue immediately adjacent to the inhibitory endings. Inhibitory endings were observed on all parts of the sensory neuron except the axon.  相似文献   

13.
Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C1X3C2XnC3X3C4), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C1–C4 and C2–C3. Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal “tail” regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S–S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.  相似文献   

14.
The capacity of platelets to form a thrombus is mediated by integrin αIIbβ3. The cytoplasmic tail of αIIb contains a highly conserved motif, 989KVGFFKR995, which plays a critical role in regulating integrin activation and acts as a recognition site for various intracellular proteins, e.g. CIB1, PP1, ICln and RN181. Previously, we demonstrated that a cell-permeable integrin-derived activating (IDA) peptide, KVGFFKR, induces platelet activation, whereas an integrin-derived inhibitory (IDI) peptide, KVGAAKR, is antithrombotic. To elucidate the molecular mechanism underlying these opposite effects we investigate the affinity of known integrin αIIb binding proteins for the two immobilized peptides in dependence on the activation state of platelets by means of peptide-affinity chromatography, blotting techniques and protein:peptide docking studies.Our results provide a model for the inhibition of ICln interaction with the integrin in activated platelets by the IDI-peptide. Thus, ICln:IDI-peptide interaction profiles can have a pivotal purpose in the search for consensus pharmacophores specifically inhibiting ICln function in platelets potentially leading to the development of integrin-derived antithrombotic drugs.  相似文献   

15.
J P Segrest 《FEBS letters》1976,69(1):111-115
The bovine αs2-, αs3-, αs4- and αs6-caseins [1] were isolated. The 4 proteins had the same amino-acid composition and C-terminal sequence, but different phosphorus contents. From a mixture of these proteins (designated as ‘αs2-complex’) and from αs3-casein a single and identical N-terminal sequence was obtained by Edman degradation. It seems therefore that the 4 proteins have the same peptide chain and only differ in their phosphorus content. For this reason we propose to modify the nomenclature of Annan and Manson [1] and to use in future the single term αs2 to designate the caseins which have been previously called αs2, αs3, αs4 and αs6 by these authors. The study of the primary structure of the peptide chain, which has confirmed these results, was undertaken on the S-carboxymethylated αs2-complex. From a cyanogen bromide digest and from a tryptic hydrolyzate of the αs2-complex, 5 and 25 peptides were obtained respectively, both sets of peptides accounting for the whole peptide chain. Examination of the tryptic peptides containing methionine combined with the N- and C-terminal sequences of the αs2-complex and some CNBr peptides, gave the order of the CNBr peptides, H.CN4CN2CN5CN1CN3.OH, which contain 4, 22, 115, 49 and 17 residues respectively. A partial sequence accounting for half of the peptide chain of the αs2-complex is given. This peptide chain is likely composed of 207 amino-acid residues  相似文献   

16.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26–34), and the 8-amino acid alpha-bag cell peptide (α-BCP1–8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both α-BCP1–8 and B26–34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells in mimicked by α-BCP1–8. The excitatory effect of the atrial gland extract cannot be duplicated with B26–34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26–34 seems to mimick α-BCP1–8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

17.
1. The action of the catch relaxing peptide CARP (H-Ala-Met-Pro-Met-Leu-Arg-Leu-amide, AMPMLRL-amide) has been studied on Helix central neurons.2. CARP, at thresholds of 1 nM or less, excited some cells while inhibiting others. CARP modulated the action of acetylcholine, e.g. at 10–100 nM CARP, the acetylcholine response was greatly reduced.3. The inhibitory action of CARP is mediated through an increase in chloride permeability while CARP excitation was dependent on sodium and calcium.4. The use of blocking agents suggested that CARP and acetylcholine acted on separate receptors.  相似文献   

18.
The phosphorylation of synthetic peptides derived from the NH2-terminal sequence of smooth-muscle myosin was studied with purified protein kinase C. The protein kinase C phosphorylation domain included both serine residues and threonine residues in the sequence SSKRAKAKTTKKR(G), denoted myosin light chain (1–13) (MLC(1–13)). Kinetic analysis of MLC(1–13) and truncated peptides derived from the parent peptide established that removal of the serine residues had little effect on protein kinase C reactivity. MLC(1–13) had a V/K of 2.4 min−1·mg−1, whereas the V/K of MLC(3–13) was 3.0 min−1·mg−1. Removal of Lys-3 resulted in a 50% decrease in V/K which was attributable to a 50% decrease in apparent Vmax. Arg-4 was established as a significant protein kinase C specificity determinant, since the apparent Km increased 7-fold and the Vmax decreased 3-fold when the parent peptide was truncated at that residue. All peptides studied required calcium and lipid effectors for full activity with protein kinase C, indicating that they are Class C substrates as defined by Bazzi and Nelsestuen (Biochemistry 26 (1987) 5002) for protein kinase C. Other protein kinases, including cyclic AMP- and cyclic GMP-dependent protein kinase, S6/H4 kinase, myosin light-chain kinase and calcium/calmodulin-dependent kinase II, had little or no activity with these peptides. In studies on the purification of lymphosarcoma protein kinase C by several chromatographic procedures, the results showed that the myosin light-chain can provide convenient and well-characterized substrates for purification and mechanistic studies of protein kinase C biochemistry.  相似文献   

19.
《Inorganica chimica acta》1988,145(2):267-271
Detailed synthetic and mechanistic studies of the addition of 2, 6-dimethylaniline to the organometallic complexes [Fe(CO)3(1–5-η-dienyl)]BF4 (1, dienyl=C6H7 or C7H9) indicates the general rate law kobs=ka [2,6-(Me)2C6H3NH2]+kb which is consistent with an equilibrium process. The greater reactivity of the C6H7 complex and the low ΔHa3 and large negative ΔSa3 values are in accordance with direct addition of the amine to the dienyl rings of 1. On the other hand the relatively much higher ΔHb 3 values are consistent with bond cleavage in dissociation as is the positive ΔSb 3 value of +220 J K−1 mol−1 determined for the C6H7 reaction. The negative ΔSb3 value of −43 J K−1 mol−1 found for the C7H9 reaction suggests the presence of an ordered transition state through which the starting dienyl complex is reformed via some internal SN2 process.  相似文献   

20.
PurposeMultiple receptors are co-expressed in many types of cancers. Octreotate (TATE) and Arg-Gly-Asp (RGD) peptides target somatostatin receptor 2 (sstr2) and integrin αvβ3, respectively. We developed and synthesized a heterodimer NOTA-3PEG4-TATE-RGD (3PTATE-RGD) and aimed to investigate its characteristics for dual-targeting sstr2 and integrin αvβ3.MethodsTATE and RGD peptides and 1,4,7-triazacylononane-N’,N’’,N’’’-triacetic acid (NOTA) were linked through a glutamate and polyethylene glycol (PEG) linker, then 3PTATE-RGD was labeled with 68Ga ion. Receptor-binding characteristics and tumor-targeting efficacy were tested in vitro and in vivo using H69 and A549 lung cancer cell lines and tumor-bearing mice models.Results[68Ga]-3PTATE-RGD had comparable sstr2 and integrin αvβ3-binding affinity with monomeric TATE and RGD in cell uptake and PET imaging study, respectively. In the competition study, H69 and A549 tumor uptake of [68Ga]-3PTATE-RGD was completed inhibited in the presence of an excess amount of unlabeled TATE or RGD, respectively. The blocked level didn’t grow when both of TATE and RGD mixture was co-injected with [68Ga]-3PTATE-RGD. The pharmacokinetics of [68Ga]-3PTATE-RGD is comparable with [68Ga]-TATE and [68Ga]-RGD, resulting in a larger application.Conclusion[68Ga]-3PTATE-RGD showed improved and wider tumor-targeting efficacy compared with monomeric TATE and RGD peptides, which warrants its further investigation in detection both of sstr2 and integrin αvβ3-related carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号