首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L-Ascorbic acid (AA) plays an important role in biological systems as an electron donor. Erythorbic acid (EA) is the epimer of AA and has chemical characteristics very similar to those of AA. It is demonstrated in the present study by 1H-NMR that dehydro-L-ascorbic acid (DAA) was reduced by EA under neutral conditions but not acidic, and that dehydroerythorbic acid (DEA) was also reduced by AA under the same conditions. These reactions also occurred at a low concentration close to the concentration of AA in such biological tissue as the liver. Furthermore, the interconversion of DAA and AA at neutral pH and low concentration was also confirmed by radioluminography. These results suggest the interconversion between DAA and AA in vivo.  相似文献   

2.
Several clinical studies have reported that an increase in excretion of tryptophan metabolites 3-hydroxyanthranilic acid (3-OHAA), anthranilic acid (AA) and other metabolites in the urine of bladder cancer patients are implicated to play a role in the etiology of bladder cancer; however the mechanisms involved are unknown. The present study compares the genotoxicity of tryptophan metabolites AA and 3-OHAA to cause mutagenesis in vitro. The DNA damage effects of tryptophan metabolites were analyzed using plasmid relaxation assay performed with AA and 3-OHAA at various concentrations between 50μM and 400μM in the presence of plasmid DNA pSP-72. Both AA and 3-OHAA did not show any plasmid relaxation activity when tested alone. However, 3-OHAA in the presence of metal cofactor Cu (II) induced plasmid relaxation by causing nicks in the plasmid. This effect was not observed in the presence of other metal cofactors Fe (II) and Mn (III). Cu (II) at increasing concentrations between 5μM and 20μM and in the presence of 100μM 3-OHAA showed an apparent dose-response in causing DNA strand breaks. The Cu (II) mediated mutagenic activation of 3-OHAA was further investigated using Ames Salmonella/microsome mutagenicity assay with reactive oxygen species (ROS) sensitive tester strain Salmonella TA102. When 100μg of 3-OHAA per plate was incubated with Cu (II) a significant increase in TA102 revertants was observed with an increase in the concentration of Cu (II) from 2.5μg to 50μg. In contrast, AA with Cu (II) at such low concentration was unable to cause any significant increase in number of the TA102 revertants. This evidence for mutagenicity with only 3-OHAA and Cu (II) but not AA suggests the presence of hydroxyl group at ortho position to amino group in 3-OHAA structurally, is critical in reacting with Cu (II) to generate genotoxicity.  相似文献   

3.
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.  相似文献   

4.
Dehydro-L-ascorbic acid (DAA) exists mainly in its C2 hydrated bicyclic form (5) in an aqueous solution, and monocyclic DAA (3), which is the expected reaction product immediately after the oxidation of AA, has not been observed by NMR spectroscopy. The formation mechanism for 5 from 3 and the stability of 5 were examined by the semi-empirical molecular orbital method (MOPAC). It was indicated that the protonation reaction was the key step in the formation of 5, therefore, the formation of 5 is thought to be more difficult under physiological conditions which mostly involve in the neutral or slightly alkaline state. However, by NMR, it was confirmed that, even in a neutral or slightly alkaline state very close to physiological conditions, the predominant form of DAA existing in an aqueous solution immediately after the enzymatic oxidation of AA was confirmed to be 5, although the possible existence of other forms of DAA at very low concentrations could not be completely excluded.  相似文献   

5.
Dehydro-L-ascorbic acid (DAA) exists mainly in its C2 hydrated bicyclic form (5) in an aqueous solution, and monocyclic DAA (3), which is the expected reaction product immediately after the oxidation of AA, has not been observed by NMR spectroscopy. The formation mechanism for 5 from 3 and the stability of 5 were examined by the semi-empirical molecular orbital method (MOPAC). It was indicated that the protonation reaction was the key step in the formation of 5, therefore, the formation of 5 is thought to be more difficult under physiological conditions which mostly involve in the neutral or slightly alkaline state. However, by NMR, it was confirmed that, even in a neutral or slightly alkaline state very close to physiological conditions, the predominant form of DAA existing in an aqueous solution immediately after the enzymatic oxidation of AA was confirmed to be 5, although the possible existence of other forms of DAA at very low concentrations could not be completely excluded.  相似文献   

6.
Metabolites derived from the polyunsaturated fatty acids (PUFA) may modulate the mesenchymal stromal cell (MSC) differentiation. Such cells can differentiate into different cellular types, including adipocytes and osteoblasts. Aging favors the bone marrow MSC differentiation toward the former, causing a loss of bone density associated with pathologies like osteoporosis. The omega-6 arachidonic acid (AA) favors MSC adipogenesis to a greater extent than omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this work, we study the joint action of both PUFA. Thus, not induced and induced to adipocyte or osteoblast MSC were treated with 20 μM of each PUFA (either AA, AA + DHA or AA + EPA). The expression of osteogenic and adipogenic molecular markers, the alox15b lipoxygenase gene expression and the 5-, 8-, 11-, 12- and 15-hydroxyeicosatetraenoic acids (HETE) derived from the AA metabolism in the culture media were determined. The results show that the adipogenesis induction of AA is not suppressed by the joint presence of EPA and DHA. In fact, both increased the adipogenic effect of AA on MSC differentiated into osteoblasts. The different HETE concentrations increased in cultures supplemented with AA, albeit such concentrations were lower in the cultures induced to differentiate, mainly at day 21 after the induction. Furthermore, the reduction in the HETE concentration was correlated with a higher expression of the alox15b gene. These results highlight the PUFA metabolism differences between uninduced and induced MSC to differentiate into adipocytes and osteoblasts, besides the relevant role of the lipoxygenase gene expression in adipogenesis induction.  相似文献   

7.
8.
The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched β-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response.  相似文献   

9.
Eighteen groups of 40 juvenile tilapia (Oreochromis niloticus) were fed five experimental diets in which crude protein (30% dry matter) was replaced at a level of 25% by dispensable amino acids (DAA) in the free form, given singly (alanine, glutamic acid or glycine) or as a mixture and at a level of 50% by DAA mixture. At the 25% substitution level, irrespective of the nature of the DAA, growth was slightly reduced (10%), while glycaemia, nitrogen retention and excretion were unaffected. A 50% substitution with the DAA mixture resulted in a marked reduction in growth (50%), a modified pattern of glycaemia and a lower nitrogen retention associated with a higher nitrogen excretion. Results suggest that DAA should not account for more than 60% of the total amino acid supply in tilapia diets.  相似文献   

10.
Abstract: Arachidonic acid (AA) markedly stimulated, in a dose-dependent manner, the spontaneous release of [3H]dopamine ([3H]DA) continuously synthesized from [3H]tyrosine in purified synaptosomes from the rat striatum. As estimated by simultaneous measurement of the rate of [3H]H2O formation (an index of [3H]tyrosine conversion into [3H]DOPA), the AA response was associated with a progressive and dose-dependent reduction of [3H]DA synthesis. In contrast to AA, arachidic acid, oleic acid, and the methyl ester of AA (all at 10−4 M ) did not modify [3H]DA release. The AA (3 × 10−5 M )-evoked release of [3H]DA was not affected by inhibiting AA metabolism, with either 5,8,11,14-eicosatetraynoic acid or metyrapone, suggesting that AA acts directly and not through one of its metabolites. AA also inhibited in a dose-dependent manner [3H]DA uptake into synaptosomes, with a complete blockade observed at 10−4 M . However, AA (10−4 M ) still stimulated [3H]DA spontaneous release in the presence of either nomifensine or other DA uptake inhibitors, indicating that AA both inhibits DA reuptake and facilitates its release process. Finally, the AA (10−4 M )-evoked release of [3H]DA was not affected by protein kinase A inhibitors (H-89 or Rp -8-Br-cAMPS) but was markedly reduced in the presence of protein kinase C inhibitors (Ro 31-7549 or chelerythrine).  相似文献   

11.
The L-ascorbic acid (AA) content of pollen from three cultivars of Lilium longiflorum Thunb. was 260–280 μg/g fresh wt. of pollen. During germination ascorbic acid content gradually decreased reaching 70% of the original value at 6 h. Pollen germinated in media containing 0.29 M D-glucose (an osmoregulator and carbon source) failed to synthesize ascorbic acid but pollen germinated in 0.29 M pentaerythritol (a non-metabolizable osmoregulator) supplemented with L-galactono-1,4-lactone (L-GalAL) did form ascorbic acid, dependent upon the concentration of the lactone. Lycorine inhibited germination but had negligible effect on the conversion of L-GalAL to AA.  相似文献   

12.
Arachidonic acid (AA) at 10?4M and 10?3M produced a phasic contraction in isolated canine basilar arteries that peaked rapidly and then slowly declined. This contraction was evidently due to the conversion of AA to prostanoids because it was blocked by cyclooxygenase inhibitors and because 11, 14, 17 eicosatrienoic acid (10?3M), which is not a cyclooxygenase substrate, failed to produce a contraction. When the artery was exposed to 10?3M AA for 20 min and washed, subsequent contractile responses to 10?6M serotonin (5-HT) were only 10% of control. Contractions produced by prostaglandin E2 (10?5M), uridine triphosphate (10?4M) and potassium (5.5×10?4M) were inhibited to a lesser degree than 5-HT, the response to potassium being the least affected (66% of control). This damaging effect of 10?3M AA did not occur if the artery was washed at peak contraction nor with 10?4M AA. Autooxidation products were evidently not responsible for the damage because prior oxygenation (90 min) of 10?4M AA had no such effect. Pretreatment with superoxide dismutase or ascorbate did not prevent the inhibition, suggesting that free radical reactions were not involved. Pretreatment with indomethacin (3×10?4M) or meclofenamate (10?4M) also failed to prevent the inhibitory phenomenon. Saponin, a detergent, produced similar inhibitory effects but 11, 14, 17 eicosatrienoic acid or oleate (10?3M) did not. The arteries partially recovered from the inhibition with time. In conclusion, AA produced contraction in basilar arteries by inducing prostaglandin synthesis but can produce secondarily by an unidentified mechanism an inhibition of the contractile responses evoked by various agonists that is both time and concentration dependent.  相似文献   

13.
Abstract: We have previously reported that arachidonic acid (AA) increases the long-term secretion of [Met5]-enkephalin (ME) and the expression of proenkephalin A (proENK) mRNA in bovine adrenal medullary chromaffin (BAMC) cells. To characterize the underlying signal transductional mechanisms for the AA-induced responses, the interactions of AA with several second messenger systems were studied. Long-term (24-h) treatment with AA (100 µ M ) increased both the secretion of ME and the expression of proENK mRNA. Pretreatment of BAMC cells with nimodipine (1 µ M ), but not with ω-conotoxin GVIA (1 µ M ), inhibited the secretion of ME and the expression of proENK mRNA induced by AA. Calmidazolium (1 µ M ), a calmodulin antagonist, also significantly inhibited AA-induced responses. However, a protein kinase C (PKC) inhibitor, sphingosine (36 µ M ), was ineffective in blocking AA-induced responses. In addition, the down-regulation of PKC by phorbol 12-myristate 13-acetate (0.1 µ M ) for 48 h did not inhibit the AA-induced responses. Forskolin (5 µ M ), an adenyl cyclase activator, alone increased the secretion of ME as well as proENK mRNA levels and, when coincubated with AA, showed an additive effect on the secretion of ME and the levels of proENK mRNA. The results suggest that the Ca2+/calmodulin pathway, but not the protein kinase A or PKC pathway, is partially involved in mediating the AA-induced increases of the long-term secretion of ME and the levels of proENK mRNA.  相似文献   

14.
ACh stimulates arachidonic acid (AA) release from membrane phospholipids of vascular endothelial cells (ECs). In rabbit aorta, AA is metabolized through the 15-lipoxygenase pathway to form vasodilatory eicosanoids 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). AA is released from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase A2 (PLA2), or from phosphatidylinositol (PI) by phospholipase C (PLC) pathway. The diacylglycerol (DAG) lipase can convert DAG into 2-arachidonoylglycerol from which free AA can be released by monoacylglycerol (MAG) lipase or fatty acid amidohydrolase (FAAH). We used specific inhibitors to determine the involvement of the PLC pathway in ACh-induced AA release. In rabbit aortic rings precontracted by phenylephrine, ACh induced relaxation in the presence of indomethacin and N(omega)-nitro-L-arginine (L-NNA). These relaxations were blocked by the PLC inhibitor U-73122, DAG lipase inhibitor RHC-80267, and MAG lipase/FAAH inhibitor URB-532. Cultured rabbit aortic ECs were labeled with [14C]AA and stimulated with methacholine (10(-5) M). Free [14C]AA was released by methacholine. Methacholine decreased the [14C]AA content of PI, DAG, and MAG fractions but not PC or PE fractions. Methacholine-induced release of [14C]AA was blocked by U-73122, RHC-80267, and URB-532 but not by U-73343, an inactive analog of U-73122. The data suggested that ACh activates PLC, DAG lipase, and MAG lipase pathway to release AA from membrane lipids. This pathway is important in regulating vasodilatory eicosanoid synthesis and vascular relaxation in rabbit aorta.  相似文献   

15.
Oxidative modification of low-density lipoprotein (oxLDL) plays a pathogenic role in atherogenesis. Classical antioxidants such as l -ascorbic acid can inhibit formation of oxLDL. &#102 -Keto-carboxylates such as pyruvate and congeners also display antioxidant properties in some cell-free and intact cell systems. We tested the hypothesis that pyruvate or &#102 -keto-glutarate may function as antioxidants with respect to LDL incubated with 5 or 10 &#119 M Cu 2+ alone or in combination with THP-1-derived macrophages. &#102 -Hydroxy-carboxylates ( l -lactate), linear aliphatic mono-carboxylates (acetate/caprylate) and l -ascorbic acid served as controls. The oxLDL formation was ascertained by electrophoretic mobility and oxLDL cytotoxicity was judged by macrophage viability and thiobarbituric acid reactive substances (TBARS) formation. Cu 2+ alone was not cytotoxic but increased electrophoretic mobility of cell-free LDL, stimulating TBARS. Millimolar pyruvate, &#102 -keto-glutarate, or micromolar l -ascorbic acid partially inhibited oxLDL formation, while &#102 -hydroxy-carboxylate or the aliphatic mono-carboxylates had no measurable antioxidant properties in cell-free LDL. Co-culture of LDL with macrophages and Cu 2+ augmented TBARS release and resulted in 95% macrophage death. Pyruvate improved macrophage viability with 5 &#119 M Cu 2+ up to 60%. l -Ascorbic acid ( &#83 100 &#119 M) protected macrophages up to 80%. When &#83 100 &#119 M l -ascorbic acid was combined with pyruvate, oxLDL formation and macrophage death were fully prevented. Thus, &#102 -keto-carboxylates, but not physiological &#102 -hydroxy-carboxylates or aliphatic mono-carboxylates qualify as antioxidants in LDL systems. Since &#102 -keto-carboxylates enhanced the antioxidant power of l -ascorbic acid, our findings may have implications for strategies attenuating atherosclerosis.  相似文献   

16.
Using a sensitive assay, we observed low levels of an unknown surfactant produced by Pseudomonas syringae pv. syringae B728a that was not detected by traditional methods yet enabled swarming motility in a strain that exhibited deficient production of syringafactin, the main characterized surfactant produced by P. syringae. Random mutagenesis of the syringafactin-deficient strain revealed an acyltransferase with homology to rhlA from Pseudomonas aeruginosa that was required for production of this unidentified surfactant, subsequently characterized by mass spectrometry as 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA). Analysis of other mutants with altered surfactant production revealed that HAA is coordinately regulated with the late-stage flagellar gene encoding flagellin; mutations in genes involved in early flagellar assembly abolish or reduce HAA production, while mutations in flagellin or flagellin glycosylation genes increase its production. When colonizing a hydrated porous surface, the bacterium increases production of both flagellin and HAA. P. syringae was defective in porous-paper colonization without functional flagella and was slightly inhibited in this movement when it lacked surfactant production. Loss of HAA production in a syringafactin-deficient strain had no effect on swimming but abolished swarming motility. In contrast, a strain that lacked HAA but retained syringafactin production exhibited broad swarming tendrils, while a syringafactin-producing strain that overproduced HAA exhibited slender swarming tendrils. On the basis of further analysis of mutants altered in HAA production, we discuss its regulation in Pseudomonas syringae.  相似文献   

17.
Abstract: The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 m M dipalmitin and [γ-32P]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was ∼1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 m M AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 µ M ). The stimulation was proportional to the concentration of AA up to 250 µ M . AA was the most potent stimulator of DG kinase, and linolenic acid showed ∼40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 µ M . It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity.  相似文献   

18.
3-Hydroxyanthranilic acid (3HAA) is one of the tryptophan metabolites along the kynurenine pathway and induces apoptosis in T cells. We investigated the mechanism of 3HAA-induced apoptosis in mouse thymocytes. The optimal concentration of 3HAA for apoptosis induction was 300-500 microM. The induction of apoptosis by a suboptimal concentration (100 microM) of 3HAA was enhanced by superoxide dismutase (SOD) as well as MnCl2 and further promoted in the presence of catalase. The 3HAA-mediated generation of intracellular reactive oxygen species (ROS) was enhanced by SOD or MnCl2 and inhibited by catalase. Corresponding to apoptosis induction, the generation of cinnabarinic acid (CA) through the oxidation of 3HAA was enhanced by SOD or MnCl2 in the presence of catalase. The synthesized CA possessed more than 10 times higher apoptosis-inducing activity than 3HAA. The intracellular ROS generation was induced by CA within 15 min and decreased to the control levels within 4 h, whereas the 3HAA-induced ROS generation increased gradually up to 4 h. Corresponding to ROS generation, the mitochondrial membrane potential was downregulated within 15 min and retained by the CA treatment. Apoptosis induction by 3HAA or CA was dependent on caspases, and caspase-3 was much more strongly activated by CA than 3HAA. In conclusion, the CA generated from 3HAA possesses a strong apoptosis-inducing activity in thymocytes through ROS generation, the loss of mitochondrial membrane potential, and caspase activation.  相似文献   

19.
Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.  相似文献   

20.
Wheat (Triticum aestivum L.) cv. Jimai22 was used to evaluate the effect of ethylene evolution rate (EER) and 1-aminocyclopropane-1-carboxylic acid (ACC) and their relations with photosynthesis and photochemical efficiency in plants well-watered (WW) and under a severe water deficit (SWD). SWD caused a noticeable reduction in the grain mass. The marked increases in both EER and the ACC concentration were observed under SWD; it was reversed effectively by exogenous spermidine (Spd) or amino-ethoxyvinylglycine (AVG). Thermal images indicated that SWD increased obviously the temperature of flag leaves, mainly due to the decrease in transpiration rate under SWD. Exogenous Spd or AVG decreased to some extent the temperature of the flag leaves. The strong decline in photosynthetic rate (P N) and stomatal conductance as well as the photodamage of PSII were also observed under SWD after 14 and 21 days after anthesis (DAA). Intercellular CO2 concentration was reduced at 7 DAA, but slightly increased at 14 and 21 DAA under SWD, indicating that the decreased P N at 7 DAA might result from stomatal limitations, while the decline after 14 and 21 DAA might be attributed to nonstomatal limitations. Correlation analysis suggested that EER and ACC showed negative relations to photosynthesis and photochemical efficiency. Data obtained suggested that the effects of SWD were mediated predominantly by the increase in EER and ACC concentration, which greatly decreased the leaf photosynthesis and photochemical efficiency, and, therefore, reduced the grain mass. Application of Spd or AVG reduced the EER and ACC, and thus positively influenced photosynthesis and photochemical efficiency under SWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号