首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We often need to rapidly change our mind about perceptual decisions in order to account for new information and correct mistakes. One fundamental, unresolved question is whether information processed prior to a decision being made (‘pre-decisional information’) has any influence on the likelihood and speed with which that decision is reversed. We investigated this using a luminance discrimination task in which participants indicated which of two flickering greyscale squares was brightest. Following an initial decision, the stimuli briefly remained on screen, and participants could change their response. Using psychophysical reverse correlation, we examined how moment-to-moment fluctuations in stimulus luminance affected participants’ decisions. This revealed that the strength of even the very earliest (pre-decisional) evidence was associated with the likelihood and speed of later changes of mind. To account for this effect, we propose an extended diffusion model in which an initial ‘snapshot’ of sensory information biases ongoing evidence accumulation.  相似文献   

2.
Reciprocating interactions represent a central feature of all human exchanges. They have been the target of various recent experiments, with healthy participants and psychiatric populations engaging as dyads in multi-round exchanges such as a repeated trust task. Behaviour in such exchanges involves complexities related to each agent’s preference for equity with their partner, beliefs about the partner’s appetite for equity, beliefs about the partner’s model of their partner, and so on. Agents may also plan different numbers of steps into the future. Providing a computationally precise account of the behaviour is an essential step towards understanding what underlies choices. A natural framework for this is that of an interactive partially observable Markov decision process (IPOMDP). However, the various complexities make IPOMDPs inordinately computationally challenging. Here, we show how to approximate the solution for the multi-round trust task using a variant of the Monte-Carlo tree search algorithm. We demonstrate that the algorithm is efficient and effective, and therefore can be used to invert observations of behavioural choices. We use generated behaviour to elucidate the richness and sophistication of interactive inference.  相似文献   

3.
The extent to which people regard others as full-blown individuals with mental states (“humanization”) seems crucial for their prosocial motivation towards them. Previous research has shown that decisions about moral dilemmas in which one person can be sacrificed to save multiple others do not consistently follow utilitarian principles. We hypothesized that this behavior can be explained by the potential victim’s perceived humanness and an ensuing increase in vicarious emotions and emotional conflict during decision making. Using fMRI, we assessed neural activity underlying moral decisions that affected fictitious persons that had or had not been experimentally humanized. In implicit priming trials, participants either engaged in mentalizing about these persons (Humanized condition) or not (Neutral condition). In subsequent moral dilemmas, participants had to decide about sacrificing these persons’ lives in order to save the lives of numerous others. Humanized persons were sacrificed less often, and the activation pattern during decisions about them indicated increased negative affect, emotional conflict, vicarious emotions, and behavioral control (pgACC/mOFC, anterior insula/IFG, aMCC and precuneus/PCC). Besides, we found enhanced effective connectivity between aMCC and anterior insula, which suggests increased emotion regulation during decisions affecting humanized victims. These findings highlight the importance of others’ perceived humanness for prosocial behavior - with aversive affect and other-related concern when imagining harming more “human-like” persons acting against purely utilitarian decisions.  相似文献   

4.
5.
Understanding the cognitive and neural processes that underlie human decision making requires the successful prediction of how, but also of when, people choose. Sequential sampling models (SSMs) have greatly advanced the decision sciences by assuming decisions to emerge from a bounded evidence accumulation process so that response times (RTs) become predictable. Here, we demonstrate a difficulty of SSMs that occurs when people are not forced to respond at once but are allowed to sample information sequentially: The decision maker might decide to delay the choice and terminate the accumulation process temporarily, a scenario not accounted for by the standard SSM approach. We developed several SSMs for predicting RTs from two independent samples of an electroencephalography (EEG) and a functional magnetic resonance imaging (fMRI) study. In these studies, participants bought or rejected fictitious stocks based on sequentially presented cues and were free to respond at any time. Standard SSM implementations did not describe RT distributions adequately. However, by adding a mechanism for postponing decisions to the model we obtained an accurate fit to the data. Time-frequency analysis of EEG data revealed alternating states of de- and increasing oscillatory power in beta-band frequencies (14–30 Hz), indicating that responses were repeatedly prepared and inhibited and thus lending further support for the existence of a decision not to decide. Finally, the extended model accounted for the results of an adapted version of our paradigm in which participants had to press a button for sampling more information. Our results show how computational modeling of decisions and RTs support a deeper understanding of the hidden dynamics in cognition.  相似文献   

6.
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their “depth of computation”) and how often they attempted to incorporate new information about the future rewards (their “recalculation period”). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation.  相似文献   

7.
Recent work has reawakened interest in goal-directed or ‘model-based’ choice, where decisions are based on prospective evaluation of potential action outcomes. Concurrently, there has been growing attention to the role of hierarchy in decision-making and action control. We focus here on the intersection between these two areas of interest, considering the topic of hierarchical model-based control. To characterize this form of action control, we draw on the computational framework of hierarchical reinforcement learning, using this to interpret recent empirical findings. The resulting picture reveals how hierarchical model-based mechanisms might play a special and pivotal role in human decision-making, dramatically extending the scope and complexity of human behaviour.  相似文献   

8.
Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of arousal, while human subjects performed a motion-discrimination task, and decomposed task behavior into latent decision making parameters using an established computational model of the decision process. In direct contrast to previous theoretical accounts specifying a role for arousal in several discrete aspects of decision making, we found that pupil diameter was uniquely related to a model parameter representing variability in the rate of decision evidence accumulation: Periods of increased pupil size, reflecting heightened arousal, were characterized by greater variability in accumulation rate. Pupil diameter also correlated trial-by-trial with specific patterns of behavior that collectively are diagnostic of changing accumulation rate variability, and explained substantial individual differences in this computational quantity. These findings provide a uniquely clear account of how arousal state impacts decision making, and may point to a relationship between pupil-linked neuromodulation and behavioral variability. They also pave the way for future studies aimed at augmenting the precision with which people make decisions.  相似文献   

9.
There is accumulating evidence that prior knowledge about expectations plays an important role in perception. The Bayesian framework is the standard computational approach to explain how prior knowledge about the distribution of expected stimuli is incorporated with noisy observations in order to improve performance. However, it is unclear what information about the prior distribution is acquired by the perceptual system over short periods of time and how this information is utilized in the process of perceptual decision making. Here we address this question using a simple two-tone discrimination task. We find that the “contraction bias”, in which small magnitudes are overestimated and large magnitudes are underestimated, dominates the pattern of responses of human participants. This contraction bias is consistent with the Bayesian hypothesis in which the true prior information is available to the decision-maker. However, a trial-by-trial analysis of the pattern of responses reveals that the contribution of most recent trials to performance is overweighted compared with the predictions of a standard Bayesian model. Moreover, we study participants'' performance in a-typical distributions of stimuli and demonstrate substantial deviations from the ideal Bayesian detector, suggesting that the brain utilizes a heuristic approximation of the Bayesian inference. We propose a biologically plausible model, in which decision in the two-tone discrimination task is based on a comparison between the second tone and an exponentially-decaying average of the first tone and past tones. We show that this model accounts for both the contraction bias and the deviations from the ideal Bayesian detector hypothesis. These findings demonstrate the power of Bayesian-like heuristics in the brain, as well as their limitations in their failure to fully adapt to novel environments.  相似文献   

10.
Many perceptual decision making models posit that participants accumulate noisy evidence over time to improve the accuracy of their decisions, and that in free response tasks, participants respond when the accumulated evidence reaches a decision threshold. Research on the neural correlates of these models'' components focuses primarily on evidence accumulation. Far less attention has been paid to the neural correlates of decision thresholds, reflecting the final commitment to a decision. Inspired by a model of bistable neural activity that implements a decision threshold, we reinterpret human lateralized readiness potentials (LRPs) as reflecting the crossing of a decision threshold. Interestingly, this threshold crossing preserves signatures of a drift-diffusion process of evidence accumulation that feeds in to the threshold mechanism. We show that, as our model predicts, LRP amplitudes and growth rates recorded while participants performed a motion discrimination task correlate with individual differences in behaviorally-estimated prior beliefs, decision thresholds and evidence accumulation rates. As such LRPs provide a useful measure to test dynamical models of both evidence accumulation and decision commitment processes non-invasively.  相似文献   

11.
Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes.  相似文献   

12.
When humans engage in social interactions, they are often uncertain about what the possible outcomes are. Because of this, highly sophisticated cooperation strategies may not be very effective. Indeed, some models instead predict the emergence of ‘social heuristics’: simple cooperation strategies that perform well across a range of different situations. Here, we put these predictions to the test in a large-scale interactive decision making experiment. We confronted participants (mostly Belgian university students) with a broad range of cooperative interactions, systematically varying the uncertainty participants had about the consequences of cooperating. As expected, we find that uncertainty about the payoff consequences of cooperation causes individuals to use social heuristics. Additionally, these heuristics directly cause a marked increase in cooperation compared to the treatment without uncertainty, even in situations where cooperation can never be beneficial. These findings provide a new explanation for why human social behavior often violates the standard predictions of economic and evolutionary theory.  相似文献   

13.

Aim

To explore the views of Malaysian healthcare professionals (HCPs) on stakeholders’ decision making roles in localized prostate cancer (PCa) treatment.

Methods

Qualitative interviews and focus groups were conducted with HCPs treating PCa. Data was analysed using a thematic approach. Four in-depth interviews and three focus group discussions were conducted between December 2012 and March 2013 using a topic guide. Interviews were audio-recorded, transcribed verbatim, and analysed thematically.

Findings

The participants comprised private urologists (n = 4), government urologists (n = 6), urology trainees (n = 6), government policy maker (n = 1) and oncologists (n = 3). HCP perceptions of the roles of the three parties involved (HCPs, patients, family) included: HCP as the main decision maker, HCP as a guide to patients’ decision making, HCP as a facilitator to family involvement, patients as main decision maker and patient prefers HCP to decide. HCPs preferred to share the decision with patients due to equipoise between prostate treatment options. Family culture was important as family members often decided on the patient’s treatment due to Malaysia’s close-knit family culture.

Conclusions

A range of decision making roles were reported by HCPs. It is thus important that stakeholder roles are clarified during PCa treatment decisions. HCPs need to cultivate an awareness of sociocultural norms and family dynamics when supporting non-Western patients in making decisions about PCa.  相似文献   

14.
Previous models of behavioral choice have described two types of hierarchy, a decision hierarchy, in which different classes of decisions are made at each level (Tinbergen, 1951), and a behavioral hierarchy, in which one behavior will take precedence over others (Davis, 1985). Most experimental work on the neuronal basis of decision-making has focussed on the latter of these: a behavioral hierarchy is described for an animal, and the neuronal basis for this hierarchy, hypothesized to depend on inhibitory interactions, is investigated. Although the concept of "dedicated command neurons" has been useful for guiding these studies, it appears that such neurons are rare. We present evidence that in the leech, most neurons, including high-level decision neurons, are active in more than one behavior. We include data from one newly-identified neuron that elicits both swimming and crawling motor patterns. We suggest that decisions are made by a "combinatorial code": what behavior is produced depends on the specific combination of decision neurons that are active at a particular time. Finally, we discuss how decision neurons may be arranged into a decision hierarchy, with neurons at each sequential level responsible for choosing between a narrower range of behaviors. We suggest additional sensory information is incorporated at each level to inform the decision.  相似文献   

15.
A standard view in the literature is that decisions are the result of a process that accumulates evidence in favor of each alternative until such accumulation reaches a threshold and a decision is made. However, this view has been recently questioned by an alternative proposal that suggests that, instead of accumulated, evidence is combined with an urgency signal. Both theories have been mathematically formalized and supported by a variety of decision-making tasks with constant information. However, recently, tasks with changing information have shown to be more effective to study the dynamics of decision making. Recent research using one of such tasks, the tokens task, has shown that decisions are better described by an urgency mechanism than by an accumulation one. However, the results of that study could depend on a task where all fundamental information was noiseless and always present, favoring a mechanism of non-integration, such as the urgency one. Here, we wanted to address whether the same conclusions were also supported by an experimental paradigm in which sensory evidence was removed shortly after it was provided, making working memory necessary to properly perform the task. Here, we show that, under such condition, participants’ behavior could be explained by an urgency-gating mechanism that low-pass filters the mnemonic information and combines it with an urgency signal that grows with time but not by an accumulation process that integrates the same mnemonic information. Thus, our study supports the idea that, under certain situations with dynamic sensory information, decisions are better explained by an urgency-gating mechanism than by an accumulation one.  相似文献   

16.

Background

Patient decisions are influenced by their personal values. However, there is a lack of clarity and attention on the concept of patient values in the clinical context despite clear emphasis on patient values in evidence-based medicine and shared decision making. The aim of the study was to explore the concept of patient values in the context of making decisions about insulin initiation among people with type 2 diabetes.

Methods and Findings

We conducted individual in-depth interviews with people with type 2 diabetes who were making decisions about insulin treatment. Participants were selected purposively to achieve maximum variation. A semi-structured topic guide was used to guide the interviews which were audio-recorded and analysed using a thematic approach. We interviewed 21 participants between January 2011 and March 2012. The age range of participants was 28–67 years old. Our sample comprised 9 women and 12 men. Three main themes, ‘treatment-specific values’, ‘life goals and philosophies’, and ‘personal and social background’, emerged from the analysis. The patients reported a variety of insulin-specific values, which were negative and/or positive beliefs about insulin. They framed insulin according to their priorities and philosophies in life. Patients’ decisions were influenced by sociocultural (e.g. religious background) and personal backgrounds (e.g. family situations).

Conclusions

This study highlighted the need for expanding the current concept of patient values in medical decision making. Clinicians should address more than just values related to treatment options. Patient values should include patients’ priorities, life philosophy and their background. Current decision support tools, such as patient decision aids, should consider these new dimensions when clarifying patient values.  相似文献   

17.
Links between affective states and risk-taking are often characterised using summary statistics from serial decision-making tasks. However, our understanding of these links, and the utility of decision-making as a marker of affect, needs to accommodate the fact that ongoing (e.g., within-task) experience of rewarding and punishing decision outcomes may alter future decisions and affective states. To date, the interplay between affect, ongoing reward and punisher experience, and decision-making has received little detailed investigation. Here, we examined the relationships between reward and loss experience, affect, and decision-making in humans using a novel judgement bias task analysed with a novel computational model. We demonstrated the influence of within-task favourability on decision-making, with more risk-averse/‘pessimistic’ decisions following more positive previous outcomes and a greater current average earning rate. Additionally, individuals reporting more negative affect tended to exhibit greater risk-seeking decision-making, and, based on our model, estimated time more poorly. We also found that individuals reported more positive affective valence during periods of the task when prediction errors and offered decision outcomes were more positive. Our results thus provide new evidence that (short-term) within-task rewarding and punishing experiences determine both future decision-making and subjectively experienced affective states.  相似文献   

18.
Yoshida W  Ishii S 《Neuron》2006,50(5):781-789
Making optimal decisions in the face of uncertain or incomplete information arises as a common problem in everyday behavior, but the neural processes underlying this ability remain poorly understood. A typical case is navigation, in which a subject has to search for a known goal from an unknown location. Navigating under uncertain conditions requires making decisions on the basis of the current belief about location and updating that belief based on incoming information. Here, we use functional magnetic resonance imaging during a maze navigation task to study neural activity relating to the resolution of uncertainty as subjects make sequential decisions to reach a goal. We show that distinct regions of prefrontal cortex are engaged in specific computational functions that are well described by a Bayesian model of decision making. This permits efficient goal-oriented navigation and provides new insights into decision making by humans.  相似文献   

19.
20.
Social interactions influence people’s feelings and behavior. Here, we propose that a person’s well-being is influenced not only by interactions they experience themselves, but also by those they observe. In particular, we test and quantify the influence of observed selfishness and observed inequality on a bystanders’ feelings and non-costly punishment decisions. We developed computational models that relate others’ (un)selfish acts to observers’ emotional reactions and punishment decisions. These characterize the rules by which others’ interactions are transformed into bystanders’ reactions, and successfully predict those reactions in out-of-sample participants. The models highlight the impact of two social values—‘selfishness aversion’ and ‘inequality aversion’. As for the latter we find that even small violations from perfect equality have a disproportionately large impact on feelings and punishment. In this age of internet and social media we constantly observe others’ online interactions, in addition to in-person interactions. Quantifying the consequences of such observations is important for predicting their impact on society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号