首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BB5-G1, a monoclonal antibody specific for human parathyroid cell membrane antigen was conjugated with two new ligands, BrMe2HBED and BrφHBED and radiolabeled with 111In. We have compared the biodistribution of 111In-labeled BBS using the new ligands to conventionally labeled (125I-labeled and 111In-DTPA-labeled) BBS in a nude mouse model. Both 111In-BrMe2HBED-BB5 and 111In-BrφHBED-BB5 attained high parathyroid-to-blood and parathyroid-to-muscle ratios by 72–96 h. 111In-BrφHBED-BB5 showed lower %ID/g than 111In-BrMe2HBED-BB5 in the clearance organs, the liver and kidney; renal activity had cleared significantly by 120 h. This work suggests that 111In-BrφHBED-BB5 offers improved in vivo behavior and may be useful as a radiopharmaceutical for localizing parathyroid tissue.  相似文献   

2.
HDP-1 monoclonal antibody was labeled with 111In using deferoxamine, diethylenetriaminepentaacetic acid or 1-(para-bromoacetamidobenzyl)-EDTA as chelating agents or with 125I. The in vitro binding capacity and stability of the labeled molecules were evaluated using affinity chromatography. The biodistribution and imaging capabilities were compared using an animal model system that does not involve the use of tumors. Similar studies were done using the corresponding labeled F(ab′)2 and Fab′ fragments. All labeled molecules, except those treated with deferoxamine, were stable in vitro. When tested in vivo, all retained their capacity to localize in the target tissue (lung). The lung %ID/g levels for the 111In-labeled molecules were, however, slightly lower than those observed for the corresponding 125I-labeled molecules. High uptake was also observed in the liver or kidneys when the 111In-labeled molecules were used; no such results were obtained with the 125I-labeled molecules. More work appears to be necessary before the use of bifunctional chelates becomes the optimal method for radiolabeling monoclonal antibodies for use in tumor imaging.  相似文献   

3.
Characteristic properties of the antigens recognized by sperm-immobilizing monoclonal antibodies (SI-mAbs) from different sources were compared by ELISA competitive inhibition assay, Western blot analysis, chromatographic analysis, and enzymatic digestion studies. Among 9 SI-mAbs, human mAb H6-3C4 and three mouse mAbs--2C6, 2B6, and 2E5--also possessed strong sperm-agglutinating activity. Binding of human mAb H6-3C4 to sperm was strongly inhibited by the three mouse mAbs (2C6, 2B6, and 2E5), but not by the rat or the other four mouse mAbs. SDS-PAGE revealed that mAb H6-3C4 and three mouse mAbs recognized the same antigen molecules of 15-25 kDa present in both sperm extracts and seminal plasma. Chemical treatments with trifluoromethanesulfonic acid and sodium metaperiodate destroyed the antigen determinants recognized by the above four mAbs, as detected by both ELISA and antibody absorption tests. Western blot analysis revealed that the antigens were susceptible to treatments with papain, proteinase K, and N-glycanase, but resistant to trypsin, V8 protease, and thermolysin. These results indicate that one of the major antigens recognized by mAbs with sperm-immobilizing action may be a sperm membrane-associated glycoprotein of 15-25 kDa and the epitope may involve N-linked oligosaccharides.  相似文献   

4.
Two protocols for sandwich antigen-capture ELISA of human myoglobin were compared. In the first (routine) variant, 14D6 monoclonal antibodies conjugated to horseradish peroxidase were used as the secondary antibodies. Bifunctional antibodies specific for myoglobin/peroxidase were used as the secondary antibodies in the second variant. The myoglobin-binding site of the bifunctional antibodies was similar to that of the 14D6 antibodies, and the second antigen-binding site of the bifunctional antibodies was bound to horseradish peroxidase. When comparing standard calibration curves, the effective concentration of the bifunctional antibodies and that of antibodies conjugated to horseradish peroxidase were made equal. It is shown that the use of bispecific antibodies as the secondary antibodies does not improve the quality of the parameters tested, i.e., the sensitivity of the assay does not increase and the slope of the calibration curve remains constant.  相似文献   

5.
6.
7.
New DOTA-based bifunctional prochelators, e.g., 1-(1-carboxy-3-carbotertbutoxypropyl)-4,7,10-(carbotertbutoxyme thyl)-1,4,7,10-tetraazacyclodode-cane (DOTAGA(tBu)4), (6d) for a broad application in the modification of biomolecules with metal ions were prepared. The five-step synthesis of 6d has an overall yield of about 20%. The coupling of 6d to a bioactive peptide on solid-phase was exemplified with use of a CCK-B (cholecystokinin) analogue.  相似文献   

8.
 The study was designed to clarify the difference in pharmacokinetics of monoclonal antibodies (mAb) in animal models and humans, and to elucidate the applicability of animal models. 99mTc-labeled murine mAb – against carcinoembryonic antigen (designated BW431/26), and neural cell adhesion molecule (NE150) – and one chimeric mouse/human mAb against nonspecific cross-reacting antigen (chNCA) were administered i.v. to normal mice and athymic mice (370 kBq, 400 ng) xenografted with human cancer cells expressing antigens, and into patients with tumor (925 MBq, 1 mg). The biodistribution of two of the three mAb (not 99mTc-BW431/26) differed clearly in mice and patients. 99mTc-NE150 showed specific uptake in xenografted tumor and otherwise a normal biodistribution; however, clinical examination showed increased uptake in the liver with rapid blood clearance (mean α half-life = 31.1 min) compared with 99mTc-BW431/26 (28.4 h). 99mTc-chNCA demonstrated increased blood clearance and renal excretion in both normal and athymic mice, with accumulation in tumors. Clinical examination showed rapid blood clearance (mean α half-life = 6.4 min) and increased uptake in the liver. High-performance liquid chromatographic analysis of 99mTc-chNCA revealed the immune complex in blood, suggesting uptake of the complex by the reticuloendothelial cells. The biodistribution of radiolabeled mAb in animal and human models was variable and specific for each of the three mAb. The results of animal studies with mAb should be evaluated carefully before being extrapolated to humans, on the basis of the nature of the mAb and interacting substances. Received: 9 April 1997 / Accepted 3 March 1998  相似文献   

9.
A bifunctional hapten was synthesized consisting of a blood group A active tetrasaccharide (A-tetra) and a blood group Lea active pentasaccharide. lacto-N-fucopentaose II (LNF II), linked to each other with a phenylaminothiourea spacer connecting the reducing ends (A-tetra-LNF II). The hapten was demonstrated to retain both blood group A and Lea activity and could be easily bound to both monoclonal anti-A and anti-Lea affinity columns. Due to the strong temperature dependence of the two antibodies in their binding to oligosaccharides, the bifunctional hapten could be utilized to achieve easy desorption in the final step of affinity purification of either monoclonal anti-Lea or anti-A. The system is postulated to have general applicability in affinity purification of any ligate that binds with an avidity too high to achieve non-denaturing desorption.To whom correspondence should be addressed.  相似文献   

10.
Monoclonal antibodies (mAbs) radiolabeled by use of metal chelators are being investigated in the laboratory for use in clinical trials. 111In is presently employed for diagnostic scintigraphy, but its applications are limited by substantive and persistant uptake of radiometal in the liver. Much current research is focused on performing cancer therapy with 90Y and 212Bi chelate-linked mAbs. This report chronicles the development and evaluation of chelating agents for 111In-radioimmunoimaging and 90Y-and 212Bi-radioimmunotherapy.  相似文献   

11.
We have evaluated five compounds, stannous chloride (SnCl2), 2-mercaptoethanol (2-ME), dithiothreitol (DTT), dithioerythritol (DTE), and ascorbic acid (AA) to reduce monoclonal antibody MoAb (disulfide groups and compared their efficacy for labeling MoAbs with 99mTc. The reduction of 99mTc with dithionite at pH 11 was nearly quantitative. The use of AA, at a molar ratio of 3500:1, for three IgG and three IgM antibodies examined, gave a labeling efficiency greater than 95%. Hence no purification was needed. The immunospecificity of AA preparations determined by specific antigen assay was 84 ± 1% for an IgM and 82.6 ± 1.1% for an IgG, highest among all agents tested. The stability of the tracer was evaluated by challenging the product with such 99mTc avid agents as cysteine, DTPA, and human serum albumin. By HPLC analysis, no 99mTc was transchelated using chelating agent to protein molar ratios as high as 500:1. In two separate groups of five mice each, the liver uptake at 4 h post injection averaged 6.8 ± 2.9% per gram for 125I-TNT-1 (IgG) and 6 ± 5.1% per gram for the same MoAb labeled with 99mTc using AA. The AA technique promises to label antibodies with 99mTc and perhaps with 186Re, by a simple “kit” procedure.  相似文献   

12.
The synthesis of bifunctional antibodies using the principle of solid-phase synthesis is described. Two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')(2) fragments from intact immunoglobulin G (IgG) were prepared using an immobilized pepsin column. Goat, mouse, and human antibodies were digested completely within 4 h. The F(ab')(2) fragments thus produced did not contain any IgG impurities. Fab' fragments were produced by reducing the heavy interchain disulfide bonds using 2-mercaptoethylamine. Use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of bifunctional antibody preparation and the rapid optimization of reaction conditions.  相似文献   

13.
14.
The chromatographic behaviour of monoclonal antibodies (MAbs) of IgM class against mutant (T103I) amidase from Pseudomonas aeruginosa was investigated. The effect of ligand concentration, the length of spacer arm and the nature of metal ion were investigated on immobilized metal ion affinity chromatography (IMAC). MAbs against mutant amidase adsorbed to Cu (II), Ni (II), Zn (II), Co (II) and Ca (II)-IDA agarose columns. The adsorption of MAbs onto immobilized metal chelates was pH dependent because an increase in the binding of MAbs was observed as the pH was raised from 6.0 to 8.0. The adsorption of MAbs to metal chelates was due to coordination of histidine residues which are available in the 3rd constant domain of heavy chain (CH3) of immunoglobulins since the presence of imidazole in the equilibration buffer abolished the adsorption of MAbs to the column packed with commercial IDA-Zn(II) agarose at pH 8.0. The combination of tailor-made stationary phases for IMAC and a correct choice of the adsorption conditions permitted to design a one-step purification procedure for MAbs of IgM class. Culture supernatants containing MAbs of IgM class against mutant amidase (T103I) were chromatographed by IMAC Co (II) column at pH 8.0. The results strongly suggest that one-step purification of MAbs of IgM class by IMAC is a cost-effective and process-compatible alternative to the other purification procedures.  相似文献   

15.
《MABS-AUSTIN》2013,5(4):759-769
Many monoclonal antibodies have been developed for therapy over the last 2 decades. In the development of therapeutic antibodies, the preclinical assessment of an antibody's biodistribution is important for the prediction of the antibody's efficacy and safety. For imaging analyses of such biodistributions, radioisotope (RI) labeling and fluorescence labeling methods are typically used, but the resulting data are limited because these methods cannot distinguish breakdown products from intact antibodies. To resolve this problem, we developed a novel method using fluorescent resonance energy transfer (FRET)-type labeling and a spectral unmixing tool. With FRET-type labeling (labeling with 2 species of fluorophore), different fluorescence properties of labeled intact antibodies and their breakdown products (the hydrolyzed/digested type of breakdown products) are made visible. With the spectral unmixing tool, the fluorescence of a solution containing the intact antibody and its breakdown products could be unmixed in proportion to their contents. Moreover, when labeled antibodies that targeted either human epidermal growth factor receptor-2 or epidermal growth factor receptor were injected into nude mice implanted subcutaneously with tumor cells, the accumulation of the injected labeled antibodies and their breakdown products in the tumor could be separately analyzed by both whole-mouse imaging and a tumor homogenate analysis. These results suggest that our method using FRET-type labeling and a spectral unmixing tool could be useful in distinguishing breakdown products from intact antibodies.  相似文献   

16.
The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.  相似文献   

17.
Comparative characterization of monoclonal antibodies to carbonic anhydrase   总被引:6,自引:0,他引:6  
Monoclonal antibodies (Mabs) were generated to avian carbonic anhydrase-C and characterized; their reactivity with human, murine, bovine, chicken and fish erythrocyte carbonic anhydrase-C, and with human carbonic anhydrase-B was investigated by ELISA and electroblot techniques. Reactivity of the Mabs with native and SDS-denatured carbonic anhydrase was compared. Mabs that recognize antigenic determinants shared by all the carbonic anhydrases examined were identified. The results demonstrate the potential usefulness of these particular probes for investigating various aspects of function, evolution, development and regulation of this important, but not well understood group of enzymes.  相似文献   

18.
In normal human plasma two forms of kininogen exist, low molecular weight kininogen (LMWK) and high molecular weight kininogen (HMWK). When these proteins are cleaved they are found to have a common heavy chain and bradykinin, but each has a unique light chain. Monoclonal antibodies to the heavy and light chains of HMWK have been developed, and the effects of each on the function of this protein are defined. Initial studies showed that an antibody, C11C1, completely neutralized the coagulant activity of plasma HMWK whereas another antibody, 2B5, did not. On a competitive enzyme-linked immunosorbent assay (CELISA) the C11C1 antibody was consumed by kininogen antigen in normal plasma but not by kininogen antigen in HMWK-deficient plasma. On immunoblot, the C11C1 antibody recognized one kininogen protein in normal plasma and did not recognize any kininogen antigen in HMWK-deficient plasma. These combined studies indicated that the C11C1 antibody was directed to an epitope on the unique 46-kDa light chain of HMWK. In contrast, the 2B5 antibody on a CELISA was consumed by kininogen antigen in both normal plasma and HMWK-deficient plasma but not by total kininogen-deficient plasma. On immunoblot, the 2B5 antibody recognized both kininogens in normal plasma but only LMWK in HMWK-deficient plasma. These combined studies indicated that the 2B5 antibody was directed to the common 64-kDa heavy chain of the plasma kininogens. Utilizing direct binding studies or competition kinetic experiments, the 2B5 and C11C1 antibodies bound with high affinity (1.71 and 0.77 nM, respectively) to their antigenic determinants on the HMWK molecule. The 2B5 antibody did neutralize the ability of HMWK to inhibit platelet calpain. These studies with monoclonal antibodies directed to each of the HMWK chains indicate that HMWK is a bifunctional molecule that can serve as a cofactor for serine zymogen activation and an inhibitor of cysteine proteases.  相似文献   

19.
20.
A monoclonal antibody, C-215, against colon cancer, was internally labelled with [75Se]methionine. The biodistribution was studied in tumour-bearing nude mice and compared with the biodistribution of [131I]C-215. The tissue uptake was divided into three parts: antibody bound to the antigen, antibody in the extracellular space and uptake of the released radionuclide. [75Se]C-215 showed a greater amount of antigen-bound antibody in the tumour, but also a greater unspecific uptake both in tumour and normal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号