首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The tissue distribution of the (Na+ + K+)-ATPase in the freshwater/land crab Potamon Potamios was studied. 2. Gills were found to display the highest total activity in the whole animal (47%) but the highest specific activity was detected in the heart (15.15 mumol Pi/mg protein/min). 3. All other organs tested were found to have low enzyme activity. 4. The freshwater/land crab ATPase enzyme was inhibited by ouabain with a Ki of 0.5 mM.Km values for ATP, Mg2+ and K+ were 1.4, 4.0 and 1.2 mM respectively. The enzyme also showed a break in the Arrhenius plot at 23 degrees C. 5. A purification method of microsomal ATPase is described involving ultracentrifugation and electrofocusing.  相似文献   

2.
3.
  • 1.1. Two distinct, membrane-bound, ATP-hydrolysing enzymes have been isolated from the same homogenate of frog skeletal muscle. Both are stimulated by Mg2+; one shows virtually no activity without Na+ and K+ and the other is unresponsive. to the monovalent cations. We have tentatively concluded that the (Na+ + K+)-dependent ATPAse is bound to fragments of plasma membrane and the (Na+ + K+)-independent ATPase to fragments of sarcomplasmic reticulum.
  • 2.2. The (Na+ + K+)-stimulated Mg2+-ATPase ((Na+ + K+)-Mg2+-ATPase) was obtained by exposing a low-speed pellet (900 × g) from a coarse homogenate to high salt concentrations, followed by extensive washing and by differential centrifugation procedures. The enzyme found in the final pellet (10500 × g) was purified many-fold by density gradient centrifugation.
  • 3.3. The highest specific activity of the purified (Na+ + K+)-Mg2+-ATPase was 600 μmoles of Pi liberated per mg nitrogen per h. Ouabain inhibited the activity of this preparation by 94%. The ATPase activity was synergistically stimulated by Na+ + K+, the optimum concentrations being 105 mM Na+ and 45 mM K+. A broad optimum pH range of 7.3–7.7 was found. Ca2+ at an added concentration of 2 mM inhibited the total ATPase activity by about 50 %.
  • 4.4. The (Na+ + K+)-independent Mg2+-ATPase was found in a microsomal fraction (44000 × g). After purification on a density gradient the enzyme had a specific activity of 300–400 μmoles of Pi liberated per mg nitrogen per h. Ca2+ activated the ATPase to an even greater degree than Mg2+ did.
  • 5.5. There was no inhibition by ouabain and little or no stimulation by Na+ and/or K+ of this Mg2+ (or Ca2+) stimulated ATPase (Mg2+ (or Ca2+)-ATPase). Attempts were made to decrease the activity of the Mg2+-ATPase and thereby accentuate any (Na+ + K+)-Mg2+-ATPase activity which might be present. The Mg2+-ATPase was unaffected by deoxycholate but was markedly reduced by urea, NaN3 and high salt concentrations; there was no evidence whatsoever of the (Na+ + K+)-Mg2+-ATPase.
  • 6.6. Examination with the electron microscope showed that the (Na+ + K+)-Mg2+-ATPase and the Mg2+ (or Ca2+)-ATPase preparations were entirely membranous and were indistinguishable. There was little evidence in either preparation of mitochondria, inner or outer mitochondrial membranes, rough endoplasmic reticulum, collagen, actin or myosin fibrils.
  • 7.7. When treated with saponin both preparations showed the hexagonal pattern characteristic of artificial and natural membranes which have an appreciable cholesterol content. The cholesterol and phospholipid concentrations were determined.
  • 8.8. Cytochrome c oxidase was not present in the purified (Na+ + K+)-Mg2+-ATPase preparation but might have been a minor contaminant of two of the three bands containing the purified Mg2+ (or Ca2+)-ATPase.
  • 9.9. Both preparations showed some NADH-diaphorase activity and 5′-nucleotidase activity. Hence these enzymes did not distinguish between the two types of membranes.
  相似文献   

4.
Enzymes catalyze essential chemical reactions needed for living processes. (Na+ +K+)-ATPase (NKA) is one of the key enzymes that control intracellular ion homeostasis and regulate cardiac function. Little is known about activation of NKA and its biological impact. Here we show that native activity of NKA is markedly elevated when protein-protein interaction occurs at the extracellular DVEDSYGQQWTYEQR (D-R) region in the alpha-subunit of the enzyme. The apparent catalytic turnover of NKA is approximately twice as fast as the controls for both ouabain-resistant and ouabain-sensitive enzymes. Activation of NKA not only markedly protects enzyme function against denaturing, but also directly affects cellular activities by regulating intracellular Ca2+ transients and inducing a positive inotropic effect in isolated rat cardiac myocytes. Immunofluorescent labeling indicates that the D-R region of NKA is not a conventional digitalis-binding site. Our findings uncover a novel activation site of NKA that is capable of promoting the catalytic function of the enzyme and establish a new concept that activating of NKA mediates cardiac contraction.  相似文献   

5.
6.
Summary The (Na++K+)-ATPase of garfish olfactory nerve axon plasma membrane was purified about sixfold by treatment of the membrane with sodium dodecyl sulfate followed by sucrose density gradient centrifugation. The estimated molecular weights of the two major polypeptide components of the enzyme preparation on sodium dodecyl sulfate gels were 110,000 and 42,000 daltons, which were different from those of the corresponding peptides of rabbit kidney (Na++K+)-ATPase. No carbohydrate was detected in the 42,000-dalton component either by the periodic acid-Schiff reagent or by the more sensitive concanavalin A-peroxidase staining procedure. The molecular properties of the garfish (Na++K+)-ATPase, such as theK m for ATP, pH optimum, energies of activation, Na and K ion dependence and vanadium inhibition, were, however, similar to those of the kidney enzyme.The partially purified garfish (Na++K+)-ATPase was reconstituted into phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted enzyme was found to catalyze a time and ATP dependent22Na+ transport. The ratio of22Na+ pumped to ATP hydrolyzed was about 1; under the same reconstitution and assay conditions, eel electroplax (Na++K+)-ATPase, however, gave a22Na+ pumped to ATP hydrolyzed ratio of nearly 3.  相似文献   

7.
Expression of functional (Na+ + K+)-ATPase from cloned cDNAs   总被引:13,自引:0,他引:13  
Functional (Na+ + K+)-ATPase is formed in Xenopus oocytes injected with alpha- and beta-subunit-specific mRNAs derived from cloned Torpedo californica cDNAs. Both the mRNAs are required for the expression of functional (Na+ + K+)-ATPase.  相似文献   

8.
Crystallization patterns of membrane-bound (Na+ +K+)-ATPase   总被引:6,自引:0,他引:6  
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ +K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric alpha beta-unit of the enzyme protein. In phosphate-induced crystals an (alpha beta) 2-unit occupies one unit cell suggesting the interactions between alpha beta-units can be of importance in the function of the Na+, K+ pump.  相似文献   

9.
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ + K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric αβ-unit of the enzyme protein. In phosphate-induced crystals an (αβ)2-unit occupies one unit cell suggesting that interactions between αβ-units can be of importance in the function of the Na+, K+ pump.  相似文献   

10.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein.  相似文献   

11.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

12.
The number of K+ bound to the (Na+ + K+)-ATPase has been measured under equilibrium conditions by a differential-titration technique (Hastings, D.F. (1977) Anal. Biochem. 83, 416-432). 5.1 K+ were bound per 32P-labelling site. The K'D for K+ was dependent on the concentration of choline, which was included to give ionic strength. K'D was 59 +/- 2.5 microM with 97 mM choline, 26 +/-1.9 microM with 30 mM choline. The K+ : choline selectivity was 2564 : 1 and the calculated K'D for K+ with zero choline was 11 microM and for choline with zero K+ was 28 mM. 20 microM ATP in the presence of 97 mM choline incresed the K'D for potassium 3-fold to 177 +/- 14 microM. The K'D for K+ with 3 mM Na+ in the presence of 27 mM choline was 81 +/- 10 microM and with 30 mM Na+ without choline 700 +/- 250 microM. The calculated K'D for Na+ at zero K+ and zero choline was 0.6 +/- 0.2 mM. The K+ : Na+ selectivity was 54 : 1.  相似文献   

13.
14.
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], J?rgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.  相似文献   

15.
16.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

17.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations.  相似文献   

18.
The temperature dependence of (Na+ + K+)-ATPase was measured, utilizing preparations of enzyme from heat and kidney of rats, hamsters, guinea pigs, ground squirrels, turtles, chickens, and ducks. The two hibernating species, hamsters and ground squirrels, were studied awake at normothermia and hibernating at 4 degrees C. The results for every species except the turtles showed the same temperature dependence established for (Na++K+)-ATPase from rabbit kidney with a quasi-linear dependence above 15 degrees C and little or no activity below 15 degrees C. Turtle enzymes showed a broad activity versus temperature curve with a fall-off at high and low temperatures. The data in all cases, including the turtle data, may be fitted by a previously described thermodynamic kinetic model. Further, the model will fith the turnover or decrease in enzyme activity at higher temperatures observed in a number of cases. These results do not support the widely imputed ion pumping role for (Na++K+)-ATPase.  相似文献   

19.
20.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号