首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Intracellular recordings were made from identified LP11, RBc4, D1 and E4 neurons in perioesophageal ganglionic ring with buccal ganglia of the mollusc Helix pomatia. 2. The modulations of acetylcholine (ACh)-induced current by vitamin E in these neurons were investigated using two-microelectrode intracellular recording and voltage-clamp techniques. 3. ACh receptors function on LP11 and RBc4 neurons was strongly regulated by intracellular calcium ions. For these ACh receptors application of 10(-6) to 10(-4) M vitamin E and calcium influx both induced an enhancement of the ACh-induced chloride current. Application of 10(-5) to 5.10(-5) M arachidonic acid on the same identified LP11 and RBc4 neurons was shown to evoke a decrease of the ACh-induced chloride current. 4. The elevation of calcium levels into D1 and E4 neurons induced a faint decrease of ACh-induced chloride current, but vitamin E and arachidonic acid were ineffective. 5. The calmodulin inhibitor, chloropromazine (6.10(-5) M), strongly inhibited the enhancing effect of calcium influx on ACh-induced chloride current in LP11 and RBc4 neurons, but it had a weak influence on the effect of vitamin E. 6. The effect of vitamin E on surface distribution of functional ACh receptors in LP11 and RBc4 neurons was found. 7. Application of 10(-4) to 10(-6) M vitamin E (DL-alpha-tocopherol) triggered mechanisms, which after a 5 to 45-min period lead to appearance of functional ACh receptors on the parts of neuronal soma, which were further from the axon. 8. Arachidonic acid (vitamin F) evoked a disappearance of functional ACh receptors, which were activated by vitamin E.  相似文献   

2.
3.
The effect of ultrasound (2.64 MHz, 0.5 W/cm2) on acetylcholine-induced (ACh-induced) current and surface distribution of ACh receptors (AChRs) were studied in neurons of the mollusc Helix pomatia. Upon switching on the ultrasound a negligibly small transient two-phase transmembrane current appeared; prolonged (5-25 min) action of beamed ultrasound waves significantly depressed the ACh-induced chloride current and caused the disappearance of functional nicotinic AChRs on parts of the neuronal soma distant from the axon. Pharmacological studies showed that the disappeared AChRs were responsible for changes in membrane permeability for chloride ions (AChRsCl). The results obtained in the present study indicate that ultrasound may be used as a selective inhibitor of AChRsCl in molluscan neurons.  相似文献   

4.
The effects of Ca2+ and vitamin E (-tocopherol) on acetylcholine (Ach)-induced Cl currents in LP11 and RBc4 neurons of the snail Helix pomatia have been studied. Injection of Ca2+ into the cells and application of vitamin E (10–5 mole/liter) induced the appearance of potentiation of Ach-induced currents in membrane parts more remote from the axon than the Ach-sensitive regions in the control. The Hill coefficient (n) for such Ach receptors was equal to 0.8, unlike 1.8 for Ach receptors active in the control. Arachidonic acid (10–5 mole/liter) and phorbol ester TPA (10–6 mole/liter) inhibited Ach responses, while oleoylacetyglycerol (10–6 mole/liter) produced no effect. Calmidazolium (10–6 mole/liter) decreased the effects of Ca2+ and vitamin E on Ach responses, while nordihydroquiaretic acid (5 · 10–6 mole/liter) enhanced the modulating effect of vitamin E and weakened that of arachidonic acid. It is suggested that the expression of Ach receptors activated by Ca2+ and vitamin E is mediated through posttranslational mechanisms, since cycloheximide and actinomycin D, inhibitors of protein synthesis, did not influence the effects of C2+ and vitamin E. The mechanisms responsible for the stimulating effects of Ca2+ and vitamin E are discussed.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 31–39, January–February, 1993.  相似文献   

5.
Summary We have examined the effects of changing extracellular pH on the function of nicotinic acetylcholine receptors fromTorpedo californica using ion flux and electrophysiological methods. Agonist-induced cation efflux from vesicles containing purified, reconstituted receptors showed a monotonic dependence on external hydrogen ion concentration with maximal fluxes at alkaline pH and no agonist-induced efflux at pH's less than 5. A similar pH dependence was measured for the peak agonist-activated membrane currents measured in microelectrode voltage-clampedXenopus oocytes induced to expressTorpedo receptor through mRNA injection. Half-maximal inhibition occurred at a similar pH in both systems, in the range of pH 6.5–7.0. Single-channel currents fromTorpedo ACh receptors measured in patch-clamp recordings were also reduced in amplitude at acid pH with an apparent pK a for block of <5. Measurements of channel kinetics had a more complicated dependence on pH. The mean channel open time determined from patch-clamp measurements was maximal at neutral pH and decreased at both acid and alkaline pH's. Thus, both channel permeability properties and channel gating properties are affected by the extracellular pH.  相似文献   

6.
7.
Nicotinic acetylcholine receptors (nAChRs) are diverse members of the neurotransmitter-gated ion channel superfamily and play critical roles in chemical signaling throughout the nervous system. The present study establishes for the first time the acute functional effects of sertraline (Zoloft), paroxetine (Paxil), nefazodone (Serzone), and venlafaxine (Effexor) on two human and one chick nAChR subtype. This study also confirms previous findings of nAChR functional block by fluoxetine (Prozac). Function of human muscle-type nAChR (alpha1/beta gammadelta) in TE671/RD cells, human autonomic nAChR (alpha3/beta4alpha5 +/- beta2) in SH-SY5Y neuroblastoma cells, or chick V274T mutant alpha7-nAChR heterologously expressed in native nAChR-null SH-EP1 epithelial cells was measured using 86Rb+ efflux assays. Functional blockade of human muscle-type and autonomic nAChRs is produced by each of the drugs in the low to intermediate micromolar range, and functional blockade of chick V274T-alpha7-nAChR is produced in the intermediate to high micromolar range. Functional blockade is insurmountable by increasing agonist concentrations at each nAChR subtype tested for each of these drugs, suggesting noncompetitive inhibition of nAChR function. These studies open the possibilities that nAChR subtypes in the brain could be targets for therapeutic antidepressants and could play roles in clinical depression.  相似文献   

8.
The hydrolytic activity of phosphatidylcholine phospholipase D in the synaptosomes from canine brain was examined using a radiochemical assay with 1,2-dipalmitoyl-sn-glycerol-3-phosphoryl[3H]choline as the exogenous substrate. The involvement of G protein(s) in regulation of this enzyme was demonstrated by a 2- to 3-fold stimulation of the basal activity (4.81 +/- 0.44 nmol choline released/mg protein/h) with guanosine 5'-(3-O-thiol)triphosphate (GTP gamma S), guanyl-5'-yl-(beta, gamma-methylene)diphosphonate, aluminum fluoride, or cholera toxin. The stimulation of phospholipase D hydrolytic activity by GTP gamma S was inhibited by 2 mM guanosine 5'-(2-O-thiol)diphosphate. GTP gamma S at the maximum stimulatory concentration (10 microM) had an additive effect on the maximum cholera toxin stimulation of phospholipase D activity. However, the reverse was not true, thus indicating the possibility that more than one G protein may be involved. Furthermore, cholinergic agonists, including acetylcholine, carbachol, and muscarine, were able to increase the phospholipase D hydrolytic activity at low but not maximally stimulatory concentrations of guanine nucleotide. These cholinergic stimulations were antagonized by atropine, a muscarinic blocker. In addition, O-tetradecanoylphorbol 13-acetate, a protein kinase C activator, was able to stimulate the hydrolytic activity of phospholipase D more than 300% in the presence of 0.2 microM GTP gamma S. However, in the absence of GTP gamma S, stimulation was less than 60%. Our results not only indicate that the receptor-G protein-regulated phospholipase D may be directly responsible for the rapid accumulation of choline and phosphatidic acid in the central nervous system but also reveal that muscarinic acetylcholine receptor-G protein-regulated phospholipase D is a novel signal transduction process coupling the neuronal muscarinic receptor to cellular responses.  相似文献   

9.
10.
11.
Structure and function of an acetylcholine receptor.   总被引:16,自引:1,他引:15       下载免费PDF全文
Structural analysis of an acetylcholine receptor from Torpedo californica leads to a three-dimensional model in which a "monomeric" receptor is shown to contain subunits arranged around a central ionophoretic channel, which in turn traverses the entire 110 A length of the molecule. The receptor extends approximately 15 A on the cytoplasmic side, 55 A on the synaptic side of the membrane. The alpha-bungarotoxin/agonist binding site is found to be approximately 55 A from the entrance to the central gated ion channel. A hypothesis for the mechanism of AcChR is presented which takes into account the structural and kinetic data, which is testable, and which serves as a focus for future studies on the agonist-induced structure change in AcChR.  相似文献   

12.
At the developing neuromuscular junction, a motoneuron-derived factor called agrin signals through the muscle-specific kinase receptor to induce postsynaptic aggregation of the acetylcholine receptor (AChR). The agrin signaling pathway involves tyrosine phosphorylation of the AChR beta subunit, and we have tested its role in receptor localization by expressing tagged, tyrosine-minus forms of the beta subunit in mouse Sol8 myotubes. We find that agrin-induced phosphorylation of the beta subunit occurs only on cell surface AChR, and that AChR-containing tyrosine-minus beta subunit is targeted normally to the plasma membrane. Surface AChR that is tyrosine phosphorylated is less detergent extractable than nonphosphorylated AChR, indicating that it is preferentially linked to the cytoskeleton. Consistent with this, we find that agrin treatment reduces the detergent extractability of AChR that contains tagged wild-type beta subunit but not tyrosine-minus beta subunit. In addition, agrin-induced clustering of AChR containing tyrosine-minus beta subunit is reduced in comparison to wild-type receptor. Thus, we find that agrin-induced phosphorylation of AChR beta subunit regulates cytoskeletal anchoring and contributes to the clustering of the AChR, and this is likely to play an important role in the postsynaptic localization of the receptor at the developing synapse.  相似文献   

13.
Neuronal nicotinic acetylcholine receptors (nAChRs) are made of multiple subunits with diversified functions. The nAChR 7-subunit has a property of high Ca2+ permeability and may have specific functions and localization within the plasma membrane as a signal transduction molecule. In PC-12 cells, fractionation by sucrose gradient centrifugation revealed that nAChR7 existed in low-density, cholesterol-enriched plasma membrane microdomains known as lipid rafts where flotillin also exists. In contrast, nAChR 5- and 2-subunits were located in high-density fractions, out of the lipid rafts. Type 6 adenylyl cyclase (AC6), a calcium-inhibitable isoform, was also found in lipid rafts and was coimmunoprecipitated with nAChR7. Cholesterol depletion from plasma membranes with methyl--cyclodextrin redistributed nAChR7 and AC6 diffusely within plasma membranes. Nicotine stimulation reduced forskolin-stimulated AC activity by 35%, and this inhibition was negated by either treatment with -bungarotoxin, a specific antagonist of nAChR7, or cholesterol depletion from plasma membranes. The effect of cholesterol depletion was negated by the addition of cholesterol. These data suggest that nAChR7 has a specific membrane localization relative to other nAChR subunits and that lipid rafts are necessary to localize nAChR7 with AC within plasma membranes. In addition, nAChR7 may regulate the AC activity via Ca2+ within lipid rafts. cholesterol; PC-12 cells  相似文献   

14.
This review is focused on the analysis of research data obtained in one of the models of conditioned reflex, heterosynaptic facilitation (HSF), in the molluscan nervous system. Our experiments were performed on identified giant command neurons LS1 and PS1 of the freshwater snail Planorbarius corneus. HSF was elicited during the electrical stimulation of two nerves: pallial (the analog of unconditioned stimulation — US) and one of the cerebral nerves (the analog of the conditioned stimulation — CS). The degree of HSF manifestation depended not on the intensity of the synaptic response of the giant neuron to US, but the efficacy of the connection between the pallial nerve and neurosecretory neurons surrounding the command neuron of the mesocerebrum. It is demonstrated that HSF develops due to the diffuse neurohumoral action of serotonin (5-hydroxytryptamine — 5-HT) on the postsynaptic structures, but not as a result of local synaptic action on the presynaptic mechanism. Approximately 70% of US cases of 5-HT application induced a four- to six-fold increase in amplitude of the excitatory postsynaptic potential (EPSP) and acetylcholine (ACh) response. Both responses are N-cholinergic and depend on the membrane permeability to Na+ and K+. In 30% of the cases, ACh response diminished simultaneously with EPSP increase. The 5-HT effect on EPSP and ACh responses were mimicked by the action of phosphodiersterase blockers and adenylate cyclase activators. Thus, the activation of the adenylate cyclase system following 5-HT action facilitates the postsynaptic mechanism underlying HSF formation in command neurons of Planorbarius corneus. Dopamine (DA) and noradrenaline (NA) blocked EPSP and simultaneously increased the amplitude of ACh response. These monoamines were also blocked HSF. The wash-out of catecholamines following HSF blockade enhanced the restoration and subsequent prolongation of synaptic facilitation. It is thus concluded that DA or NA may control the HSF intensity and duration under natural conditions of the nervous system in the molluscs.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 224–232, May–June, 1993.  相似文献   

15.
The leptin hormone is critical for normal food intake and metabolism. While leptin receptor (Lepr) function has been well studied in the hypothalamus, the functional relevance of Lepr expression in the ventral tegmental area (VTA) has not been investigated. The VTA contains dopamine neurons that are important in modulating motivated behavior, addiction, and reward. Here, we show that VTA dopamine neurons express Lepr mRNA and respond to leptin with activation of an intracellular JAK-STAT pathway and a reduction in firing rate. Direct administration of leptin to the VTA caused decreased food intake while long-term RNAi-mediated knockdown of Lepr in the VTA led to increased food intake, locomotor activity, and sensitivity to highly palatable food. These data support a critical role for VTA Lepr in regulating feeding behavior and provide functional evidence for direct action of a peripheral metabolic signal on VTA dopamine neurons.  相似文献   

16.
It was found that 10(-7)-10(-8) mol/l oxytocin (OT) or arginine-vasopressin (AVP) applications produced effects on functional properties of three types of acetylcholine (ACh) receptors on various neurons identified in the ganglia of Helix pomatia under voltage clamp conditions. OT and AVP depressed ACh-induced sodium-potassium-calcium current in neuron RBc3 without shift of reversal potential. Our data show that there are two types (subtypes) of ACh receptors which are connected with chloride current in neurons of Helix pomatia. OT decreased ACh-induced chloride current in neuron D4 and enhanced ACh-induced chloride current in neuron D5. These effects of OT were mimicked by the intracellular injection of cyclic AMP or application of isobutylmethylxanthine and an active cyclic AMP analog. AVP as a rule mimicked the effects of OT on functional properties of ACh receptors, but in neuron F8 effects of OT and AVP were independent. The present results suggest that cyclic AMP may be the second messenger mediating the OT- and AVP-induced modulations of functional properties of three types of ACh-receptors.  相似文献   

17.
18.
1. Nicotinic acetylcholine receptors (nAChR)4 from BC3H1 cells (which express a skeletal muscle-type receptor) and from Torpedo californica electric organ were expressed in Xenopus laevis oocytes and studied with a voltage-clamp technique. 2. We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This "use-dependent" increase in potentiation was Ca2+ dependent, while the potentiation itself was not. 3. Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane. 4. ADP potentiated the response to suberyldicholine and nicotine, as well as ACh. 5. Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR.  相似文献   

19.
Under equilibrium conditions, the nicotinic acetylcholine receptor from Torpedo electroplax carries two high affinity-binding sites for agonists. It is generally assumed that these are the only agonist sites on the receptor and that their occupancy results in rapid channel activation followed by slower conformational transitions that lead to the high affinity equilibrium state. These slow transitions are thought to reflect the physiological process of desensitization. Here we show that preequilibration of the high affinity sites with saturating concentrations of carbamylcholine does not diminish the ion flux response to subsequent exposure to higher (activating) concentrations of this agonist. This finding has profound implications with respect to receptor function: (1) occupancy of the high affinity sites per se does not desensitize the receptor and (2) these sites cannot be directly involved in receptor activation. It is thus necessary to invoke the presence of additional binding sites in channel opening.  相似文献   

20.
Bovine adrenal chromaffin cells have nicotinic acetylcholine receptors (AChRs) that mediate release of catecholamines from the cells in response to synaptic input, and resemble neuronal AChRs in pharmacology and antigenic profile. Results presented here show that a cAMP-dependent process enhances the function of adrenal chromaffin AChRs as a population in the plasma membrane. This was demonstrated by showing that cAMP analogues cause specific increases both in the level of nicotine-induced catecholamine release from the cells and in the level of the nicotine-induced conductance change occurring in the cells. Neither de novo synthesis of receptors nor transport of preexisting intracellular receptors to the plasma membrane is necessary for the enhancement. The responsiveness of AChRs to regulation by the cAMP-dependent process appears to depend on the length of time the receptors have been on the cell surface. AChRs newly inserted into the plasma membrane generate a greater nicotinic response than do older AChRs and, unlike older AChRs, their response to agonist is not enhanced after treatment of the cells with cAMP analogues. The findings indicate that the AChRs and/or associated components undergo a maturation in the plasma membrane that alters their function and their regulation by secondary messenger systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号