首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of death in densovirus infected mosquitoes remains unexplored. This study investigated the cellular consequences of densovirus infection in Aedes aegypti mosquitoes after a second generation challenge with a densovirus isolated from adult Aedes albopictus mosquitoes in Thailand (AThDNV). Specimens were analyzed by TUNEL assay, fluorescent in situ hybridization (FISH) and a calorimic assay to detect activation of caspase 3-like activity. After challenge, moribund mosquitoes showed considerable evidence of TUNEL positive cells. The caspase 3-like activity assay showed that the presence of TUNEL positive cells was associated with increased levels of activated caspase 3-like activity in AThDNV infected mosquitoes.  相似文献   

2.
Mukha  D. V.  Schal  K. 《Molecular Biology》2003,37(4):513-523
A new Blattella germanica densovirus (BgDNV, Parvoviridae: Densovirinae, Densovirus) was found. Virus DNA and cockroach tissues infected with BgDNV were examined by electron microscopy. Virus particles about 20 nm in diameter were observed both in the nucleus and in the cytoplasm of infected cells. Virus DNA proved to be a linear molecule sized about 1.2 m. The complete BgDNV genome was sequenced and analyzed. Five ORF were detected: two coded for structural capsid proteins and were on one DNA strand, and three coded for regulatory proteins and were on the other strand. Potential promoters and polyadenylation signals were identified. Structural analysis was performed for terminal inverted repeats containing extended palindromes. The genome structure of BgDNV was compared with that of other Parvoviridae.  相似文献   

3.
The lack of available cell lines has hampered the study of viral diseases in crustaceans. This is particularly important for aquaculture which has been plagued by viral diseases since its rapid expansion to meet with the growing demand for seafood products. This study was designed to find an alternative bioassay to cell lines by investigating the use of insects as potential animal models for Penaeus merguiensis densovirus (PmergDNV). Acheta domesticus (house cricket) and Tenebrio molitor (mealworms) were challenged with approximately 1 × 106 virions of PmergDNV by inoculation. PmergDNV was detected in 20% of Tenebrio molitor and 86.6% of Acheta domesticus challenged with PmergDNV. During a subsequent time course experiment, there was a non significant increase in PmergDNV titres (104-5 virions), reaching a maximum peak at day 5 (106 copies). A threshold of PmergDNV DNA level equal to or greater than 103 virions was necessary for mortality in Acheta domesticus. As the inoculum increased from 103 DNA copies to 104, 105, 106, mortality increased from 20% to 60%, 80% and 100%, respectively. This is the first evidence that insects may be directly used to study viruses from crustaceans and concludes Acheta domesticus may be used as a potential model to study Penaeus merguiensis densovirus.  相似文献   

4.
Pathogenicity of the Diatraea saccharalis densovirus (DsDNV) was tested on its host larvae.The results showed that up to 4 days after inoculation,no larvae mortality was observed and the infected larvae started to exhibit the infection symptoms from the fourth day.After 5 days of infection,the cumulative mortality of infected larvae increased significantly and reached 60% after 12 days and 100% after 21 days of infection,whereas that of the control group was only 10% and 20%,respectively,after same periods of infection,suggesting that the high mortality of infected larvae groups was due to the high pathogenicity of DsDNV.The size of the DsDNA was determined by Electron microscopy visualization of viral DNA molecules and gel electrophoresis of both native and endonuclease digested DNA fragments.The total length of the native DsDNA was about 5.95 kb.The DsDNV DNA was digested with 16 restriction enzymes and a restriction map of those enzymes was constructed with 41 restriction sites.Comparison of the restriction map of the DsDNV genome with those of the genomes ofJunonia coenia densovirus (JcDNV) and Galleria mellonella densovirus (GmDNV) indicated that the three densovirus genomes were found to share many identical restriction sites.Thus,most of the restriction sites of the following endonucleases Bam H Ⅰ,Hha Ⅰ,Xba Ⅰ,Cla Ⅰ,Asp 700,Spe Ⅰ,Nco Ⅰ and Bcl Ⅰ,were found to be conserved among the three densovirus genomes.Symmetrical cleavage sites mapped at the both ends of the genome suggested the presence of inverted terminal repeats (ITRs) whose size was estimated to be about 500 bp.The similar genome size,almost identical restriction sites and presence of an ITR of about 500 bp for these three densoviruses suggested that they belong to the same group of ambisense densoviruses.  相似文献   

5.
Pathogenicity of the Diatraea saccharalis densovirus (DsDNV) was tested on its host larvae. The results showed that up to 4 days after inoculation, no larvae mortality was observed and the infected larvae started to exhibit the infection symptoms from the fourth day. After 5 days of infection, the cumulative mortality of infected larvae increased significantly and reached 60% after 12 days and 100% after 21 days of infection, whereas that of the control group was only 10% and 20%, respectively, after same periods of infection, suggesting that the high mortality of infected larvae groups was due to the high pathogenicity of DsDNV. The size of the DsDNA was determined by Electron microscopy visualization of viral DNA molecules and gel electrophoresis of both native and endonuclease digested DNA fragments. The total length of the native DsDNA was about 5.95 kb. The DsDNV DNA was digested with 16 restriction enzymes and a restriction map of those enzymes was constructed with 41 restriction sites. Comparison of the restriction map of the DsDNV genome with those of the genomes ofJunonia coenia densovirus (JcDNV) and Galleria mellonella densovirus (GmDNV) indicated that the three densovirus genomes were found to share many identical restriction sites. Thus, most of the restriction sites of the following endonucleases Bam H I, Hha I, Xba I, Cla I, Asp 700, Spe I, Nco I and Bcl I, were found to be conserved among the three densovirus genomes. Symmetrical cleavage sites mapped at the both ends of the genome suggested the presence of inverted terminal repeats (ITRs) whose size was estimated to be about 500 bp. The similar genome size, almost identical restriction sites and presence of an ITR of about 500 bp for these three densoviruses suggested that they belong to the same group of ambisense densoviruses.  相似文献   

6.
The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.  相似文献   

7.
We have developed a novel PCR-based assay for individual and simultaneous detection of three major pathogens (microsporidians, nucleopolyhedrovirus (NPV) and densovirus (DNV)) infecting the silkworm, Bombyx mori. Multiplex PCR, using three primer pairs, two of which were designed from the conserved regions of 16S small subunit ribosomal RNA gene of microsporidians, and polyhedrin gene of NPVs respectively, and a third primer pair designed from the internal sequences of B. mori DNVs (BmDNV), showed discrete and pathogen specific PCR products. The assay showed high specificity and sensitivity for the pathogenic DNA. Under optimized PCR conditions, the assay yielded a 794 bp DNA fragment from Nosema bombycis, 471 bp fragment from B. mori NPV (BmNPV) and 391 bp fragment from BmDNV. Further, this detection method was successfully applied to other silkworm species such as Antheraea mylitta and Samia cynthia ricini, in detecting same or similar pathogens infecting them. This method is a valuable supplement to the conventional microscopic diagnostic methods and can be used for the early detection of pathogens infecting silkworms. Furthermore it can assist research and extension centers for the safe supply of disease-free silkworms to farmers.  相似文献   

8.
《Gene》1998,206(2):223-228
A physical map of the Zymomonas mobilis ZM4 genome has been constructed from the results of reciprocal Southern hybridization with PmeI, PacI, and NotI-digested genomic DNA fragments and linking cosmid clones. Restriction enzyme-digested Z. mobilis ZM4 genome was electrophoresed with phage lambda DNA concatemers as a size standard in a Bio-Rad CHEF-DRII pulsed-field gel electrophoresis (PFGE) system. The restriction enzyme PmeI generated 15 fragments (3–625 kb), and PacI produced 19 fragments (7–525 kb). Each size of restriction fragment was calculated by comparison to the size of phage lambda DNA concatemers, and the genome size of Z. mobilis ZM4 was estimated to be 2085.5 kb. The 19 known genes and three rrn operons were localized on the map.  相似文献   

9.
A natural densovirus (DNV) of a serious phytophagous pest, Helicoverpa armigera, was isolated. The genome of HaDNV contained 6,039 nucleotides (nt) and included inverted terminal repeats (ITRs) of 545 nt with terminal Y-shaped hairpins of 126 nt. Its DNA sequence and ambisense organization with four typical open reading frames (ORFs) demonstrated that it belonged to the genus Densovirus in the subfamily Densovirinae of the family Parvoviridae.  相似文献   

10.
Penaeus stylirostris densovirus (PstDNV), a pathogen of penaeid shrimp, causes significant damage to farmed and wild shrimp populations. In contrast to other parvoviruses, PstDNV probably has only one type of capsid protein that lacks the phospholipase A2 activity that has been implicated as a requirement during parvoviral host cell infection. The structure of recombinant virus-like particles, composed of 60 copies of the 37.5-kDa coat protein, the smallest parvoviral capsid protein reported thus far, was determined to 2.5-Å resolution by X-ray crystallography. The structure represents the first near-atomic resolution structure within the genus Brevidensovirus. The capsid protein has a β-barrel “jelly roll” motif similar to that found in many icosahedral viruses, including other parvoviruses. The N-terminal portion of the PstDNV coat protein adopts a “domain-swapped” conformation relative to its twofold-related neighbor similar to the insect parvovirus Galleria mellonella densovirus (GmDNV) but in stark contrast to vertebrate parvoviruses. However, most of the surface loops have little structural resemblance to any of the known parvoviral capsid proteins.The Parvoviridae family is a family of small DNA viruses that is divided into two subfamilies, the Parvovirinae that infect vertebrates and the Densovirinae that infect invertebrates. Penaeus stylirostris densovirus (PstDNV), also known as infectious hypodermal and hematopoietic necrosis virus (IHHNV), belongs to the Densovirinae subfamily and was first reported as a highly lethal disease of juvenile shrimp in 1983 (22). The virus has significant commercial impact on the shrimp farming industry, causing mass mortality and severe deformations in penaeid shrimp during catastrophic epidemics in marine aquaculture facilities worldwide (14). PstDNV is closely related to the mosquito brevidensoviruses (35), which have the potential to be used as biological control agents of mosquito-borne diseases, such as malaria (30), dengue, chikungunya, and yellow fever (8).The single-stranded DNA genome of parvoviruses is encapsidated within a nonenveloped, icosahedral protein shell of less than 280 Å in external diameter. The capsid consists of 60 structurally equivalent subunits that are composed of the major viral coat protein and a few copies of N-terminally extended variants of the major capsid protein. A phospholipase A2 (PLA2) activity in the unique N-terminal extension of the largest minor capsid protein plays a crucial role during parvoviral host cell infection (7, 12, 13, 20, 46). The structures of the major capsid protein of several vertebrate parvoviruses have previously been determined to near-atomic resolution (1, 18, 23, 37, 41, 43, 44). However, the only high-resolution structure available for the invertebrate subfamily is that of the insect parvovirus Galleria mellonella densovirus (GmDNV) (36). The central motif of parvoviral capsid proteins is an eight-stranded, antiparallel β-barrel “jelly roll” fold. The surface of the virion, however, is formed by large insertions connecting the strands of the β-barrel, thereby creating features that govern antigenicity, receptor binding, and most intersubunit contacts. Surface characteristics common to most parvoviruses are protrusions at or around the icosahedral threefold axes, depressions on the twofold axes, and canyons surrounding the fivefold axes. At each fivefold apex, a cylindrical pore connects the interior of the virus particle with its exterior surroundings. In full virions, these pores are occupied by a glycine-rich motif in the N-terminal region of the major capsid protein, presumably positioning the N-terminal peptide for externalization. The general surface topology of GmDNV is smoother, probably due to smaller loop insertions. The structure of some of these insertions has diverged from vertebrate parvoviruses beyond recognition (4, 36). The N-terminal portions of twofold-related subunits in GmDNV have swapped their positions relative to those of the vertebrate parvoviruses. A cryo-electron microscopy (cryo-EM) study of Aedes albopictus densovirus, a brevidensovirus, has shown that its surface features are different from GmDNV and the mammalian parvoviruses, in particular in having prominent protrusions at the fivefold axes (9).Although it has been reported that PstDNV contains four structural proteins, as determined by SDS-polyacrylamide gel electrophoresis (3), these data do not fit the coding sequence (35). The 4.1-kb DNA genome of PstDNV (3) encodes in the 3′ half of the plus strand just one structural protein of 329 amino acids, as of now the smallest reported parvoviral capsid protein, and in the 5′ half of the plus strand two nonstructural proteins (666 and 363 amino acids) (35). Having only a single type of capsid protein is an unusual feature for viruses in the Parvoviridae family, where capsids are generally reported to contain two or more coat protein variants. A stretch of 11 amino acids in the N-terminal region of the capsid protein (17-DAHNEDEEHAE-27) is reminiscent of the PLA2 catalytic site (35), but it lacks important conserved motifs of PLA2s. Consequently, but curiously, PstDNV does not have the enzymatic activity that has previously been described as a requirement for parvoviral infectivity.We report here the three-dimensional (3D) crystal structure of recombinant, empty virus-like particles (VLPs) of the shrimp parvovirus PstDNV at 2.5-Å resolution. The loops connecting the strands of the structurally conserved jelly roll motif differ considerably in structure and length from other parvoviruses. The near-atomic resolution structure might provide the basis for the design of capsid binding antiviral compounds that may protect shrimp against parvoviral infection (16, 32, 42). Furthermore, the structure might aid the targeting of monoclonal antibodies to gain functional data about the role of the Brevidensovirus capsid protein during the infection cycle. Such information in turn may permit the design of densovirus-based delivery systems for drugs or pest control agents in aquacultural facilities. The small dimensions of PstDNV VLPs can be advantageous for their possible use as nanoparticles for antigen presentation and transport of immune stimulatory substances or interfering RNAs (21, 26). Additionally, the small size of the PstDNV capsid protein makes the system attractive as a model for studying assembly mechanisms of icosahedral virus capsids.  相似文献   

11.
The chloroplast DNA of Chlamydomonas reinhardii has been examined by restriction endonuclease analysis. EcoRI, BamHI and BglII produce 30, 17 and 12 fragments, respectively, whose sites have been determined by electron microscopy and by comparative gel electrophoresis. These fragments have been ordered into a circular map which corresponds to a genome size of Mr = 126 × 106. The map was established by comparing the double digests of individual restriction fragments and by hybridizing purified labelled fragments to restriction enzyme digests of chloroplast DNA. The restriction fragments were isolated by molecular cloning or by preparative agarose gel electrophoresis.The two sets of chloroplast ribosomal RNA genes are contained within two inverted repeats of 13 × 106 molecular weight, which are located nearly at opposite sides of the map. In addition, the mapping studies have revealed the presence of short repeated base sequences which are interspersed throughout the chloroplast genome.  相似文献   

12.
Understanding the role of ‘epigenetic’ changes such as DNA methylation and chromatin remodeling has now become critical in understanding many biological processes. In order to delineate the global methylation pattern in a given genomic DNA, computer software has been developed to create a virtual image of restriction landmark genomic scanning (Vi-RLGS). When using a methylation- sensitive enzyme such as NotI as the restriction landmark, the comparison between real and in silico RLGS profiles of the genome provides a methylation map of genomic NotI sites. A methylation map of the Arabidopsis genome was created that could be confirmed by a methylation-sensitive PCR assay. The method has also been applied to the mouse genome. Although a complete methylation map has not been completed, a region of methylation difference between two tissues has been tested and confirmed by bisulfite sequencing. Vi-RLGS in conjunction with real RLGS will make it possible to develop a more complete map of genomic sites that are methylated or demethylated as a consequence of normal or abnormal development.  相似文献   

13.
The temperate bacteriophage BK5-T was isolated from Streptococcus cremoris BK5 by induction with mitomycin C. Electron microscopy revealed that BK5-T DNA consists of linear molecules, ranging in size from 39.7 to 46 kilobase pairs. Restriction analysis of self-ligated BK5-T DNA showed that the ends of the DNA were not cohesive. The EcoRI restriction fragments of the phage genome were cloned into pACYC184. Restriction enzyme analysis of both the phage DNA and the cloned EcoRI fragments with EcoRI, BstEII, PstI, ClaI, and XbaI yielded a 37.6-kilobase-pair-long circular restriction map for the phage genome. It was concluded that the BK5-T DNA molecules in the population differ in their sequence by a circular permutation and that individual DNA molecules are terminally redundant. The map location of the sites at which packaging of BK5-T DNA into phage heads is initiated (pac) and at which the phage integrates into the bacterial chromosome (att) were established.  相似文献   

14.
A physical map of the 88 × 106 dalton, circular DNA genome of Autographa californica nuclear polyhedrosis virus was constructed. The complete order of BamHI and XmaI restriction enzyme sites was determined. The EcoRI and HindIII fragments were partially ordered, and their general locations, relative to the BamHI and XmaI maps, were determined. Alterations in the restriction endonuclease fragment patterns of natural genotypic variants of A. californica nuclear polyhedrosis virus, including Trichoplusia ni MEV nuclear polyhedrosis virus, were located on the physical map. Alterations were found throughout the A. californica nuclear polyhedrosis virus DNA genome.  相似文献   

15.
The locations of thirty restriction endonuclease cleavage sites were determined on the genome of adenovirus type 4 (Ad4), the sole member of the subgroup E adenovirions. The restriction endonucleases BglII, EcoRI, HindIII, HpaI, KpnI, SalI, and XbaI cut Ad4 DNA 10, 3, 2, 3, 5, 5 and 3 times, respectively. Orientation of the linear Ad4 map with respect to left and right molecular ends was accomplished by taking advantage of the limited sequence homology between Ad2 and Ad4. Ten non-overlapping fragments of Ad4 DNA representing 98% of the genome, map units 1.6 to 99.6, have been cloned into the plasmid vector pKC7.  相似文献   

16.
17.
The sites on the left arm of bacteriophage λ DNA cleaved by the restriction endonucleases isolated from Hemophilus influenzae strain Rc (HincII) and Rd (HindII+III), and Hemophilus parainfluenzae (HpaI) were localized on the λ physical map, and the fragments resulting from these cleavages were identified by gel electrophoresis. The restriction sites within the b2 region of λ were mapped by analysis of the digestion profiles of deletion and substitution derivatives of λ, as well as by digesting individual fragments produced by one restriction endonuclease with another restriction endonuclease. The restriction sites on the λ genome between the left vegetative end and the b2 region were mapped entirely by successive digestion experiments. The restriction fragment map for the right arm of λ may be found in the accompanying paper (Robinson and Landy, 1977).  相似文献   

18.
Murai K  Tsunewaki K 《Genetics》1987,116(4):613-621
The genus Avena contains five different chloroplast genomes, I-V. A physical map of chloroplast (ct) DNA of Avena sativa (type I chloroplast genome) was constructed using three restriction endonucleases, PstI, SalI and SmaI. This genome is ca. 135.5 kbp in size, and contains two inverted repeats of ca. 22.5 kbp each, separated by a large (ca. 79.0 kbp) and small (ca. 12.5 kbp) single copy region. The rbcL gene which codes for the large subunit of ribulose 1,5-bisphosphate carboxylase, was located in the map. Restriction fragment patterns of all five chloroplast genomes were compared, and among them five fragment size and five restriction site mutations were disclosed. Four site mutations were found in two or more chloroplast genomes, the other site and five fragment size mutations were specific to one or another of the chloroplast genomes. A dendrogram showing phylogenetic relationships among the five chloroplast genomes, based on the distribution of the common and specific mutations among them, indicates that chloroplast genome divergence characterized by three restriction site mutations occurred first between two diploid groups, each carrying A and C genome (nuclear), respectively, followed by further speciation in each group.  相似文献   

19.
The genome of a densovirus of a major phytophagous pest, Pseudoplusia includens, was analyzed. It contained 5,990 nucleotides (nt) and included inverted terminal repeats of 540 nt with terminal Y-shaped hairpins of 120 nt. Its DNA sequence and ambisense organization with 4 typical open reading frames demonstrated that it belonged to the genus Densovirus in the subfamily Densovirinae of the family Parvoviridae.  相似文献   

20.
A restriction map of the 2.8-Mb genome of the unicellular eukaryote Encephalitozoon cuniculi (phylum Microspora), a mammal-infecting intracellular parasite, has been constructed using two restriction enzymes with 6 bp recognition sites (BssHII and MluI). The fragments resulting from either single digestions of the whole molecular karyotype or double digestions of 11 individual chromosomes have been separated by two-dimensional pulsed field gel electrophoresis (2D-PFGE) procedures. The average distance between successive restriction sites is ~19 kb. The terminal regions of the chromosomes show a common pattern covering ~15 kb and including one 16S–23S rDNA unit. Results of hybridisation and molecular combing experiments indicate a palindromic-like orientation of the two subtelomeric rDNA copies on each chromosome. We have also located 67 DNA markers (clones from a partial E.cuniculi genomic library) by hybridisation to restriction fragments. Partial or complete sequencing has revealed homologies with known protein-coding genes for 32 of these clones. Evidence for two homologous chromosomes III, with a size difference (3 kb) related to a subtelomeric deletion/insertion event, argues for diploidy of E.cuniculi. The physical map should be useful for both the whole genome sequencing project and studies on genome plasticity of this widespread parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号