首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell responses were evaluated using the IFN-γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90), to assess the main clinical variables associated with cellular sensitization and its predominant time-frame impact on allograft outcome, and was further validated in an independent new set of kidney transplant recipients (n = 67). We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year incidence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular rejection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosuppression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensitization before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction therapy.  相似文献   

2.

Background

It remains difficult to predict and to measure the efficacy of pharmacological immunosuppression. We hypothesized that measuring the B-cell repertoire would enable assessment of the overall level of immunosuppression after heart transplantation.

Methods and Findings

In this proof-of-concept study, we implemented a molecular-barcode-based immune repertoire sequencing assay that sensitively and accurately measures the isotype and clonal composition of the circulating B cell repertoire. We used this assay to measure the temporal response of the B cell repertoire to immunosuppression after heart transplantation. We selected a subset of 12 participants from a larger prospective cohort study (ClinicalTrials.gov NCT01985412) that is ongoing at Stanford Medical Center and for which enrollment started in March 2010. This subset of 12 participants was selected to represent post-heart-transplant events, with and without acute rejection (six participants with moderate-to-severe rejection and six without). We analyzed 130 samples from these patients, with an average follow-up period of 15 mo. Immune repertoire sequencing enables the measurement of a patient’s net state of immunosuppression (correlation with tacrolimus level, r = −0.867, 95% CI −0.968 to −0.523, p = 0.0014), as well as the diagnosis of acute allograft rejection, which is preceded by increased immune activity with a sensitivity of 71.4% (95% CI 30.3% to 94.9%) and a specificity of 82.0% (95% CI 72.1% to 89.1%) (cell-free donor-derived DNA as noninvasive gold standard). To illustrate the potential of immune repertoire sequencing to monitor atypical post-transplant trajectories, we analyzed two more patients, one with chronic infections and one with amyloidosis. A larger, prospective study will be needed to validate the power of immune repertoire sequencing to predict rejection events, as this proof-of-concept study is limited to a small number of patients who were selected based on several criteria including the availability of a large number of samples and the absence or presence of rejection events.

Conclusions

If confirmed in larger, prospective studies, the method described here has potential applications in the tailored management of post-transplant immunosuppression and, more broadly, as a method for assessing the overall activity of the immune system.  相似文献   

3.
The use of antibodies in transplantation dates back to 1986 when muromonab CD3, a monoclonal antibody (mAb) targeting CD3, was first approved for prevention and treatment of renal allograft rejection. These agents have largely been used in a brief adjunctive manner to provide immunosuppression during the initial period after solid organ transplantation or during an episode of acute rejection. Recent advances in our understanding of transplant immunology have allowed emergence of numerous new mAbs, targeting co-stimulatory signals, cell surface receptors and novel protein constructs. During the next decade, transplant professionals will increasingly require knowledge of the mechanisms and pharmacologic characteristics of these novel therapeutic agents.Key words: antibody, immunosuppression, transplantation, biologics, anti-adhesion  相似文献   

4.
Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries.  相似文献   

5.
Acute renal allograft rejection remains an important problem following kidney transplantation. Several immunological and non-immunological factors intervene in renal graft rejection. Glutathione S-transferase super family is one of the important enzymes for biotransformation of both exogenous and endogenous xenobiotic compounds such as immunosuppressive drugs. The new class of this family is omega that includes two subunits GSTO1 and GSTO2. In this study 282 samples were collected from renal recipients of Namazi hospital in Shiraz-Iran during 2007–2010 years. Also 300 healthy samples as control group were collected from Shiraz population, included in our study. The primary outcome of this study was defined as biopsy-proven acute rejection during 1 year of renal transplantation. We applied polymerase chain reaction–restriction fragment length polymorphism method for determination of GSTO2 N142D polymorphism. Our result showed no significant association between GSTO2 polymorphism and acute rejection. Also this genetic variant has no significant effect with the risk of end stage renal disease. Cadaveric donor type for acute rejection significantly differed between acute rejection and non acute rejection patients (P = 0.004). The combination effect of donor type and GSTO2 polymorphism indicates DD genotype with cadaver donor type increase risk of acute rejection (OR = 3.82, 95 % CI 1.80–12.37, P = 0.02).  相似文献   

6.
In this paper we describe an approach that aims to provide fundamental information towards a scientific, biomechanical basis for the use of natural coral scaffolds to initiate mesenchymal stem cells into osteogenic differentiation for transplant purposes. Biomaterial, such as corals, is an osteoconductive material that can be used to home human derived stem cells for clinical regenerative purposes. In bone transplantation, the use of biomaterials may be a solution to bypass two main critical obstacles, the shortage of donor sites for autografts and the risk of rejection with allograft procedures. Bone regeneration is often needed for multiple clinical purposes for instance, in aesthetic reconstruction and regenerative procedures. Coral graft Porites lutea has been used by our team for a decade in clinical applications on over a thousand patients with different bone pathologies including spinal stenosis and mandibular reconstruction. It is well accepted that human bone marrow (hBM) is an exceptional source of mesenchymal stem cells (MSCs), which may differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. Isolated MSCs from human bone marrow were induced into osteoblasts using an osteogenic medium enriched with two specific growth factors, FGF9 and vitamin D2. Part of the cultured MSCs were directly transferred and seeded onto coral scaffolds (Porites Lutea) and induced to differentiate into osteoblasts and part were cultured in flasks for osteocell culture. The data support the concept that hBM is a reliable source of MSCs which may be easily differentiated into osteoblasts and seeded into coral as an optimal device for clinical application. Within this project we have also discussed the biological nature of MSCs, their potential application for clinical transplantation and the prospect of their use in gene therapy.  相似文献   

7.
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.  相似文献   

8.
9.
Pancreas transplantation for the treatment of diabetes mellitus is being done with increasing frequency. Refined operative techniques, an improved immunosuppression regimen, and an earlier recognition of rejection have led to dramatic increases in both graft and patient survival rates. Preliminary data suggest that a functioning pancreatic allograft may arrest or reverse most of the complications of diabetes, although the effects on retinopathy remain controversial. Patients also acquire a strong sense of well-being after successful pancreas transplantation.  相似文献   

10.
The different choices of immunosuppression (IS) regimens influenced the outcomes of liver transplantation. Steroid was applied as a standard IS to prevent and treat rejections. However, steroid-related complications were increasingly prominent. This study compared the efficacy and safety of standard IS regimens with the efficacy and safety of steroid-free IS regimen and induction IS regimen in Chinese liver transplantation recipients for hepatocellular carcinoma (HCC). A total of 329 patients who underwent liver transplantation from January 2008 to December 2012 were retrospectively reviewed. Three different groups of patients received standard triple-drug IS regimen of steroid, tacrolimus (TAC) and mycophenolate mofetil (MMF) (triple-drug regimen group; n=57), induction-contained IS regimen of basiliximab, steroid, TAC and MMF (BS group; n=241), and induction-contained and steroid-free regimen of basiliximab, TAC and MMF (SF group; n=31), respectively. There were no significant differences in terms of patient, tumor-free and graft survival rates. The acute rejection rate and rejection time were equivalent in different groups. But compared with BS group, higher incidences of biliary complications (11.52% vs. 30.77%, p=0.013) and graft dysfunction (0.48% vs. 13.64%, p=0.003) were observed in SF group. Furthermore, compared with the two groups, incidence of pleural effusion was also higher in SF group (15.79%, 11.96% vs. 45.45%, respectively, both p<0.01). And a trend towards less proportion of De novo diabetes was revealed in SF group. Although it was found that patient, tumor-free and graft survival rates were equivalent among three IS regimens, higher incidences of complications were demonstrated in steroid-free regimen in patients for HCC. These findings suggested that steroid-free IS regimen has no clear advantages in comparison with standard IS regimens for liver transplant recipients with HCC and the postoperative complications should be treated with concentrated attention.  相似文献   

11.
《Bioscience Hypotheses》2008,1(3):165-167
Heart transplantation still remains the best choice of treatment for many kinds of end-stage heart diseases, but the side-effects of immunosuppressive agents and cardiac allograft vasculopathy (CAV) remain the main two obstacles in improving the long outcome of cardiac allografts. Mesenchymal stem cells (MSCs) are nonhematopoietic pluripotent cells that retain the ability to undergo differentiation into cells of different lineages. What's more, MSCs have been demonstrated to exert many profound inhibitory effects on many lymphocytic subpopulations such as T cells, regulatory T cells, and dendritic cells in vitro. In vivo studies also suggested that MSCs could be used to attenuate immune-mediated disorders such as transplant rejection and autoimmune diseases including rheumatoid arthritis, multiple sclerosis and GVHD. Hepatocyte growth factor (HGF) is a pleiotropic factor that plays an important role in protecting infarcted myocardial by its antiapoptotic, antifibrotic and angiogenic effects. And also it was suggested that the administration of HGF could effectively suppress acute and chronic cardiac allograft rejection. We based our hypothesis on that HGF-modified MSCs would engraft stably in recipient and interact with important immune cells such as T cells, B cells and dendritic cells, then stable immune tolerance be induced possibly by both immunomodulation of MSCs and cardioprotective and immunomodulative effects of HGF. Further work is necessary to highlight the specific underlying mechanisms.  相似文献   

12.
BackgroundRecently, proof-of-concept experiments have shown that genetically modified bone marrow mesenchymal stromal cells (MSCs) carrying hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were able to express the funny current (If) in vitro, which played a key role in the process of pacemaker generation for heart rate, and were capable of pacemaker function after transplantation into the host heart. Nevertheless, because of the lack of direct experimental access to the implanted cells in situ, the changes in electrophysiological characteristics and the mechanisms underlying the pacemaker function of engrafted HCN gene–transfected MSCs in vivo remain unclear.Methods and ResultsOn the basis of the improved preparation of ventricular slices, we successfully performed an in situ investigation of allografted mouse HCN4 gene (mHCN4)-transfected rat MSCs (rMSCs) with the use of patch-clamp recording in ventricular slices. We demonstrate that allografted mHCN4-transfected rMSCs survived in the host heart for >4 weeks; that they expressed If, which is generated by the mHCN4 channel, with a similar amplitude but greater negative activation compared with parallel cells cultured in vitro; that they did not express optical action potentials or depolarization-activated inward sodium or calcium currents; and that they exhibited a low incidence of gap-junctional coupling with host cardiomyocytes.ConclusionsThis study provides direct experimental access to investigate MSCs after transplantation into the host heart. We propose that mHCN4-transfected rMSCs survived in the host heart with altered electrophysiological characteristics of If and were accompanied by a low efficiency of connexin 43 expression at 4 weeks after transplantation, which may affect its pacemaker function in vivo.  相似文献   

13.
Mesenchymal stromal cells (MSCs) are seen as an ideal source of cells to induce graft acceptance; however, some reports have shown that MSCs can be immunogenic rather than immunosuppressive. We speculate that the immunomodulatory effects of regulatory T cells (Tregs) can aid the maintenance of immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy can have synergistic immunomodulatory effects on allograft rejection. After preconditioning with Fludarabine, followed by total body irradiation and anti-asialo-GM-1(ASGM-1), tail skin grafts from C57BL/6 (H-2kb) mice were grafted onto the lateral thoracic wall of BALB/c (H-2kd) mice. Group A mice (control group, n = 9) did not receive any further treatment after preconditioning, whereas groups B and C (n = 9) received cell therapy with MSCs or Tregs, respectively, on days −1, +6 and +13 relative to the skin transplantation. Group D (n = 10) received cell therapy with MSCs and Tregs on days −1, +6 and +13. Cell suspensions were obtained from the spleens of five randomly chosen mice from each group on day +7, and the immunomodulatory effects of the cell therapy were evaluated by flow cytometry and real-time PCR. Our results show that allograft survival was significantly longer in group D compared to the control group (group A). Flow cytometric analysis and real-time PCR for splenocytes revealed that the Th2 subpopulation in group D increased significantly compared to the group B. Also, the expression of Foxp3 and STAT 5 increased significantly in group D compared to the conventional cell therapy groups (B and C). Taken together, these data suggest that a combined cell therapy approach with MSCs and Tregs has a synergistic effect on immunoregulatory function in vivo, and might provide a novel strategy for improving survival in allograft transplantation.  相似文献   

14.
CXCL10-CXCR3 axis plays a pivotal role in cardiac allograft rejection, so that targeting CXCL10 without inducing generalized immunosuppression may be of therapeutic significance in allotransplantation. Since the role of resident cells in cardiac rejection is still unclear, we aimed to establish reliable human cardiomyocyte cultures to investigate Th1 cytokine-mediated response in allograft rejection. We used human fetal cardiomyocytes (Hfcm) isolated from fetal hearts, obtained after legal abortions. Hfcm expressed specific cardiac lineage markers, specific cardiac structural proteins, typical cardiac currents and generated ventricular action potentials. Thus, Hfcm represent a reliable in vitro tool for allograft rejection research, since they resemble the features of mature cells. Hfcm secreted CXCL10 in response to IFNgamma and TNFalphaalpha; this effect was magnified by cytokine combination. Cytokine synergy was associated to a significant TNFalpha-induced up-regulation of IFNgammaR. The response of Hfcm to some currently used immunosuppressive drugs compared to rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist and Th1-mediated response inhibitor, was also evaluated. Only micophenolic acid and rosiglitazone halved CXCL10 secretion by Hfcm. Given the pivotal role of IFNgamma-induced chemokines in Th1-mediated allograft rejection, these preliminary results suggest that the combined effects of immunosuppressive agents and rosiglitazone could be potentially beneficial to patients receiving heart transplants.  相似文献   

15.
Mesenchymal stem cells (MSCs) are suggested to be immune modulators because of their therapeutic potential in transplantation. In the present study, we evaluated the therapeutic potential of autologous MSCs for preventing graft rejection after allogeneic rat islet transplantation. We assessed the ability of MSCs to elicit an antiproliferative response in alloreactive lymphocytes and tested the immunosuppressive effect of MSCs in allogeneic islet transplantation. In islet allotransplantation, injection of autologous MSCs or a subtherapeutic dose of cyclosporine A (CsA; 5 mg/kg) alone did not prolong allograft survival. However, graft survival was attained for >100 d in 33% of autologous MSC-plus-CsA-treated recipients, indicating that graft acceptance was achieved in a subgroup of allograft recipients. Splenocytes from autologous MSC-plus-CsA-treated rats exhibited a reduced mixed lymphocyte reaction (MLR)-proliferative response to donor stimulators and increased interleukin (IL)-10 release. Interestingly, after excluding host CD11b(+) cells, splenic T cells from autologous MSC-plus-CsA-treated rats did not produce IL-10 or did not inhibit proliferative responses under the same conditions. The use of autologous MSC-plus-CsA downregulated immune responses, inducing donor-specific T-cell hyporesponsiveness by reducing the production of proinflammatory cytokines and inducing antiinflammatory cytokine production, especially that of IL-10, during the early posttransplantation period. T-regulatory cells made a contribution at a later phase. In conclusion, the combined use of autologous MSCs and low-dose CsA exerted a synergistic immunosuppressive effect in an islet allograft model, suggesting a role for autologous MSCs as an immune modulator.  相似文献   

16.
Current immunosuppressive protocols have reduced rejection occurrence in heart transplantation; nevertheless, management of heart transplant recipients is accompanied by major adverse effects, due to drug doses close to toxic range. In allograft rejection, characterized by T-helper 1 (Th1) cell-mediated response, the CXCL10-CXCR3 axis plays a pivotal role in triggering a self-promoting inflammatory loop. Indeed, CXCL10 intragraft production, required for initiation and development of graft failure, supports organ infiltration by Th1 cells. Thus, targeting the CXCL10-CXCR3 axis while avoiding generalized immunosuppression, may be of therapeutic significance. Based on preclinical evidence for immunoregulatory properties of vitamin D receptor agonists, we propose that a less hypercalcemic vitamin D analogue, BXL-01-0029, might have the potential to contribute to rejection management. We investigated the effect of BXL-01-0029 on CXCL10 secretion induced by proinflammatory stimuli, both in human isolated cardiomyocytes (Hfcm) and purified CD4+ T cells. Mycophenolic acid (MPA), the active agent of mycophenolate mofetil, was used for comparison. BXL-01-0029 inhibited IFNγ and TNFα-induced CXCL10 secretion by Hfcm more potently than MPA, impairing cytokine synergy and pathways. BXL-01-0029 reduced also CXCL10 protein secretion and gene expression by CD4+ T cells. Furthermore, BXL-01-0029 did not exert any toxic effect onto both cell types, suggesting its possible use as a dose-reducing agent for conventional immunosuppressive drugs in clinical transplantation.  相似文献   

17.
Although the immunomodulative properties of mesenchymal stem cells (MSCs) open up attractive possibilities in solid-organ transplantation, information concerning the optimal dose, route, timing of administration, major histocompatibility complex (MHC)-restriction and relevant mechanisms is currently lacking. Therefore, better characterization of MSC immunoregulatory activity and elucidation of its mechanisms are crucial. In this study, we confirmed that MSCs did not elicit proliferation by allogeneic CD4+ T cells, suggesting that MSCs were not immunogenic. By using C57BL/6 mouse MSCs as donor-derived or recipient-derived or as third-party MSCs, we discovered that MSCs suppressed CD4+ T cell proliferation and prolonged mouse cardiac allograft survival in a dose-dependent and non-MHC-restricted manner. We also found that intraperitoneal administration favored survival prolongation, although this prolongation was weaker than that via the intravenous route. Only infusion at earlier time points favored survival prolongation. Depletion of CD4+CD25+ T cells did not affect the immunosuppression of MSCs on CD4+ T cells. Moreover, MSCs did not induce regulatory T cells. The in vivo data revealed that MSCs did not increase the percentage of CD4+CD25+ T cells and FoxP3 expression. More importantly, we demonstrated for the first time that depletion of CD4+CD25+ T cells did not hinder MSC-induced survival prolongation, indicating that CD4+CD25+ regulatory T cells were not essential for the prolongation of MSC-mediated allograft survival.  相似文献   

18.
Although transplantation is the common treatment for end-stage renal failure, allograft rejection and marked morbidity from the use of immunosuppressive drugs remain important limitations. A major challenge in the field is to identify easy, reliable and noninvasive biomarkers allowing the prediction of deleterious alloreactive immune responses and the tailoring of immunosuppressive therapy in individuals according to the rejection risk. In this study, we first established that the expression of the RC isoform of the CD45 molecule (CD45RC) on CD4 and CD8 T cells from healthy individuals identifies functionally distinct alloreactive T cell subsets that behave differently in terms of proliferation and cytokine secretion. We then investigated whether the frequency of the recipients CD45RC T cell subsets before transplantation would predict acute graft rejection in a cohort of 89 patients who had undergone their first kidney transplantation. We showed that patients exhibiting more than 54.7% of CD8 CD45RChigh T cells before transplantation had a 6 fold increased risk of acute kidney graft rejection. In contrast, the proportions of CD4 CD45RC T cells were not predictive. Thus, a higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients’ CD8 T cells.  相似文献   

19.
Only a few randomized clinical trials have been performed so far in heart transplant recipients, mainly because of the relatively small number of heart transplants performed worldwide each year. The main focus of the few controlled trials that have been completed has been the prevention and treatment of heart allograft rejection. In the area of pharmacologic immunosuppression, both biological agents and drugs have been the subject of investigation. Among the biological agents, chimeric monoclonal antibodies directed against the interleukin (IL)-2 receptor, which have been found to be safe and effective in renal transplant recipients, are now undergoing the test of controlled trials in heart transplant recipients. Immunosuppressive drugs that have been studied in controlled trials include calcineurin inhibitors (such as the microemulsion formulation of cyclosporine and tacrolimus) and inhibitors of purine synthesis, such as mycophenolate mofetil. Non-pharmacologic prophylactic immunosuppression with photopheresis has also been tested in a prospective, multicenter, randomized trial. New immunosuppressive regimens, such as mycophenolate mofetil combined with a monoclonal antibody against the IL-2 receptor, are being tested with the aim to reduce or eliminate calcineurin inhibitors or corticosteroids. Although clinical approaches to the induction of tolerance have undergone preliminary clinical evaluation, the ability to induce tolerance to an allograft in humans remains an elusive goal.  相似文献   

20.
CD4+CD25+FoxP3+ regulatory T cells (Tregs) and Th17 cells are known to be involved in the alloreactive responses in organ transplantation, but little is known about the relationship between Tregs and Th17 cells in the context of liver alloresponse. Here, we investigated whether the circulating Tregs/Th17 ratio is associated with acute allograft rejection in liver transplantation. In present study, thirty-eight patients who received liver transplant were enrolled. The patients were divided into two groups: acute allograft rejection group (Gr-AR) (n = 16) and stable allograft liver function group (Gr-SF) (n = 22). The frequencies of circulating Tregs and circulating Th17 cells, as well as Tregs/Th17 ratio were determined using flow cytometry. The association between Tregs/Th17 ratio and acute allograft rejection was then analyzed. Our results showed that the frequency of circulating Tregs was significantly decreased, whereas the frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection. Tregs/Th17 ratio had a negative correlation with liver damage indices and the score of rejection activity index (RAI) after liver transplantation. In addition, the percentages of CTLA-4+, HLA-DR+, Ki67+, and IL-10+ Tregs were higher in Gr-SF group than in Gr-AR group. Our results suggested that the ratio of circulating Tregs/Th17 cells is associated with acute allograft rejection, thus the ratio may serve as an alternative marker for the diagnosis of acute rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号