首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH4+ assimilation on exogenous CO2. N-sufficient cells were only able to assimilate NH4+ maximally in the presence of CO2 and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH4+ assimilation. These results indicate that NH4+ assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO2 fixation. N-limited cells assimilated NH4+ both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO2 fixation was not required for NH4+ assimilation. Using CO2 removal techniques reported previously in the literature, we were unable to demonstrate CO2-dependent NH4+ assimilation in N-limited cells. However, employing more stringent CO2 removal techniques we were able to show a CO2 dependence of NH4+ assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO2 requirements for NH4+ assimilation. The first is as a substrate for photosynthetic CO2 fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase.  相似文献   

2.
Substantial concentrations of NH4 + are found in the apoplast of the leaves of Brassica napus. Physiological studies on isolated mesophyll protoplasts with 15NH4 + revealed the presence of a high-affinity ammonium transporter that shared physiological similarity to the high-affinity NH4 + transporters in Arabidopsis thaliana (AtAMT1;3). PCR techniques were used to isolate a full-length clone of a B. napus homologue of AMT1 from shoot mRNA which showed 97% similarity to AtAMT1;3. The full-length cDNA when cloned into the yeast expression vector pFL61 was able to complement a yeast mutant unable to grow on media with NH4 + as the sole nitrogen source. Regulatory studies with detached leaves revealed a stimulation of both NH4 + uptake and expression of mRNA when the leaves were supplied with increasing concentrations of NH4 +. Withdrawal of NH4 + supply for up to 96 h had little effect on mRNA expression or NH4 + uptake; however, plants grown continuously at high NH4 + levels exhibited decreased mRNA expression. BnAMT1;2mRNA expression was highest when NH4 + was supplied directly to the leaf and lowest when either glutamine or glutamate was supplied to the leaves, which directly paralleled chloroplastic glutamine synthetase (GS2) activity in the same leaves. These results provide tentative evidence that BnAMT1;2may be regulated by similar mechanisms to GS2 in leaves.  相似文献   

3.
Ammonia (NH3) fluxes between beech leaves (Fagus sylvatica) and the atmosphere were investigated in a 90-year-old forest canopy and related to leaf nitrogen (N) pools and glutamine synthetase (GS) activities. The stomatal ammonia compensation point, ?? NH3, was measured by both a twig cuvette and bioassay techniques involving measurements of pH and ammonium (NH 4 + ) concentration in the leaf apoplastic solution. The ?? NH3 determined on the basis of the gas exchange measurements followed a seasonal variation with early-season peaks during leaf expansion (9.6 nmol NH3 mol?1 air) and late-season peaks during leaf senescence (7.3 nmol NH3 mol?1 air). In the mid-season, the ?? NH3 of mature green leaves was much lower (around 3 nmol NH3 mol?1 air) and dropped below the NH3 concentration in the ambient atmosphere. For comparison, ?? NH3 obtained by the apoplastic bioassay were 7.0, 3.7 and 6.4 nmol NH3 mol?1 air in early-, mid-, and late -season, thus agreeing reasonably well with ?? NH3 values derived from the gas exchange measurements. Potential NH3 emission fluxes during early and late season were 1.31 and 0.51 nmol m?2 leaf surface area s?1, respectively, while leaves were a sink for NH3 during mid-season. During leaf establishment and senescence, both apoplastic and bulk tissue NH 4 + concentrations were relatively high coinciding with low activities of glutamine synthetase, which is a key enzyme in leaf N metabolism. In conclusion, the exchange of NH3 between beech leaves and the atmosphere followed a seasonal variation with NH3 emission peaks being related to N mobilization during early leaf establishment and remobilization during late leaf senescence.  相似文献   

4.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

5.
A fully automatic growth chamber system was built in order to study NH3, exchange and NH3, compensation points of plant canopies growing under controlled environmental conditions in which atmospheric NH3, concentrations corresponded to those naturally occurring over terrestrial ecosystems. The system included plant cuvettes with separate root and shoot compartments constructed of coated polycarbonate. This material did not change the spectral composition of photosynthetically active light and had a low adsorption of NH3, and water vapour. Atmospheric NH3, concentrations in the inlet of the cuvettes were controlled by mass-flow controllers. Inlet and outlet NH3, concentrations were measured on-line with a modified chemiluminescent NH3, monitor. At airflow rates per unit leaf area of about 3 dm3 m?2 s?1, the system allowed accurate determinations of NH3, exchange rates down to about 0.1 nmol NH3, m?2 s?1. The NH3, compensation points at anthesis for barley cultivars Laevigatum and Golf were 4.2±2.8 and 4.6±2.9nmol mol?1 of NH3, in air (SE, n=4), respectively. NH3, absorption in both cultivars increased linearly with atmospheric NH3, concentration in the range 0–30 nmol mol?1 of NH3, in air. NH3, absorption was much higher in the light than in the dark, indicating a strong stomatal and/or metabolic control of NH3, exchange. Photosynthesis and transpiration were not affected by exposure to NH3, concentrations in the range 0–30nmol mol?1 for 7d.  相似文献   

6.
Effect of influent substrate ratio on anammox process was studied in sequencing batch reactor. Operating temperature was fixed at 35 ± 1 °C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. When influent NO2 ?-N/NH4 +-N was no more than 2.0, total nitrogen removal rate (TNRR) increased whereas NH4 +-N removal rate stabilized at 0.32 kg/(m3 d). ΔNO2 ?-N/ΔNH4 +-N increased with enhancing NO2 ?-N/NH4 +-N. When NO2 ?-N/NH4 +-N was 4.5, ΔNO2 ?-N/ΔNH4 +-N was 1.98, which was much higher than theoretical value (1.32). The IC50 of NO2 ?-N was 289 mg/L and anammox activity was inhibited at high NO2 ?-N/NH4 +-N ratio. With regard to influent NH4 +-N/NO2 ?-N, the maximum NH4 +-N removal rate was 0.36 kg/(m3 d), which occurred at the ratio of 4.0. Anammox activity was inhibited when influent NH4 +-N/NO2 ?-N was higher than 5.0. With influent NO3 ?-N/NH4 +-N of 2.5–6.5, NH4 +-N removal rate and NRR were stabilized at 0.33 and 0.40 kg/(m3 d), respectively. When the ratio was higher than 6.5, nitrogen removal would be worsened. The inhibitory threshold concentration of NO2 ?-N was lower than NH4 +-N and NO3 ?-N. Anammox bacteria were more sensitive to NO2 ?-N than NH4 +-N and NO3 ?-N. TNRR would be enhanced with increasing nitrogen loading rate, but sludge floatation occurred at high nitrogen loading shock. The Han-Levenspiel could be applied to simulate nitrogen removal resulting from NO2 ?-N inhibition.  相似文献   

7.
Photosynthesis, primary productivity, N content, and N2 fixation were determined as a function of applied NH4+ in peas (Pisum sativum L. cv. Alaska) which were inoculated or not inoculated with Rhizobium leguminosarum. Cabon dioxide exchange rate (CER) increased 10-fold, total N content 7-fold, and total dry weight 3-fold in 26-day-old uninoculated plants as applied NH4+ was increased from 0 to 16 millimolar. In inoculated plants of the same age CER and dry weight were maximal at 2 millimolar NH4+, and total N content increased between 0 and 2 millimolar NH4+ but did not change significantly with higher NH4+ applications. Per cent N content of uninoculated plants was significantly lower than that of inoculated plants except at the highest NH4+ concentration (16 millimolar). Symbiotic N2 fixation by inoculated plants was maximal in peas grown with 2 millimolar NH4+; and apparent relative efficiency of N2 fixation, calculated from C2H2 reduction and H2 evolution, was maximal in the 2 to 4 millimolar NH4+ concentration range. The capacity to fix N2 through the Rhizobium-legume symbiosis significantly enhanced the rate and efficiency of photosynthesis and plant N content when NH4+ concentration in the nutrient solution was below 8 millimolar. Above 8 millimolar NH4+ concentration uninoculated plants had greater CER, N content, and dry weight.  相似文献   

8.
The Cu(II) complex formation equilibria of D- glucosamine were studied in aqueous solution by potentiometric and spectroscopic (ESR, CD, absorption spectra) techniques. All data agree that two major species are formed in the pH region 6–9 involving two D-glucosamine ligand molecules bound to the cupric ion via NH2(CuL2) or NH2 and O? (CuH?2L2). In the latter case deprotonated hydroxyls were found to be very effective coordination sites for Cu(II) giving rise to chelate complexes. On the contrary, no complex formation was observed for the Cu(II) N-acetyl-D-glucosamine system.  相似文献   

9.
Kinetics of Virus Inactivation by Ammonia   总被引:3,自引:3,他引:0       下载免费PDF全文
Ammonia has been shown to be virucidal in sludge and NH4Cl solutions, although the rates at which viruses are inactivated have not been thoroughly studied. In the present studies, the kinetics of the poliovirus type 1 (strain CHAT) and bacteriophage f2 inactivation were examined in such a way that the effects of OH and NH4+ could be separated from those of NH3. Purified virus stocks were placed into solutions of NH4Cl and control solutions containing an equivalent concentration of NaCl and incubated at 20°C. The percentage of virus surviving was calculated, and the kinetics were evaluated by constructing semilogarithmic plots of data. At all pH values and NH3 concentrations studied, the kinetics of the inactivation of both viruses were pseudo-first order. OH had no measurable effect on the viruses, whereas the effects of NH4+ and Na+ were similar. A dose-response relationship between NH3 and the viruses was also found. Bacteriophage f2 was approximately 4.5 times more resistant to the effects of NH3 than was poliovirus.  相似文献   

10.
The preparation of membrane vesicles in lithium chloride is described which oxidizes NH4Cl via hydroxylamine to nitrite. The following properties of the vesicles were determined: the uptake of NH4Cl and O2 by electrode methods, the production of NH2OH and NO2 from NH4Cl as well as ATPase activity. The stoichiometry of NH4+:O2:NO2? was found to be 1:1.2:0.7 in vesicles compared with 1:1.5:1.0 in either spheroplasts or washed cells. It is shown that the membrane vesicles also contain a Cu and energy-dependent NH4? translocase as in spheroplasts and cells.  相似文献   

11.
Ammonia production and assimilation1 were examined in photorespiratory mutants of Arabidopsis thaliana L. lacking ferredoxin-dependent glutamate synthase (Fd-GluS) activity. Although photosynthesis was rapidly inhibited in these mutants in normal air, NH4+ continued to accumulate. The accumulation of NH4+ was also seen after an initial lag of 30 minutes in 2% O2, 350 microliters per liter of CO2 and after 90 minutes in 2% O2, 900 microliters per liter of CO2. The accumulation of NH4+ in normal air and low O2 was also associated with an increase in the total pool of amino acid-N and glutamine, and a decrease in the pools of glutamate, aspartate, alanine, and serine. Upon return to dark conditions, or to 21% O2, 1% CO2 in the light, the NH4+ which had accumulated in the leaves was reassimilated into amino acids. The addition of methionine sulfoximine (MSO) resulted in higher accumulations of NH4+ in glutamate synthase mutants and prevented the reassimilation of NH4+ upon return to the dark. The addition of MSO also resulted in the accumulation of NH4+ in glutamate synthase mutants in the light and in 21% O2, 1% CO2. These results indicate that glutamine synthetase is essential for the reassimilation of photorespiratory NH4+ and for primary N assimilation in the leaves and strongly suggest that glutamate dehydrogenase plays only a minimal role in the assimilation of ammonia. Levels of NADH-dependent glutamate synthase (NADH-GluS) appear to be sufficient to account for the assimilation of NH4+ by a GS/NADH-GluS cycle.  相似文献   

12.
Luxhøi  J.  Nielsen  N.E.  Jensen  L.S. 《Plant and Soil》2004,262(1-2):263-275
Pool dilution techniques, where the soil ammonium pool is labeled with 15NH4 +, are commonly used to estimate gross N mineralization rates in soil. To estimate the rates unbiased, it is assumed that the 15NH4 + is distributed homogenously in ambient 14NH4 + pool of the soil. However, completely homogeneous distribution of 15NH4 + may commonly not be feasible. The objective of this paper was to examine the importance of the spatial distribution of 14NH4 + and 15NH4 + on the measured gross N mineralization rate. In a 2-day incubation experiment, gross N mineralization rates were measured in soil, where different distributions of 14NH4 + and 15NH4 + were combined. Generally, distribution of 15NH4 + to 50% of the soil volume did not alter the measured gross mineralization rate however more heterogeneous distribution caused the rate to be underestimated. Certain combinations of 14NH4 + and 15NH4 + distributions caused the rate to be overestimated. Based on the experimental results, we developed a 2-dimensional model array of soil compartments, to estimate the gross N mineralization and gross NH4 + consumption rates in local microsites in the soil. If one of the nitrogen-isotopes was more abundant in a compartment with high NH4 +-concentration, and the other nitrogen-isotope was more abundant in a compartment with low NH4 +-concentration, the nitrogen-isotopes would have different apparent bioavailability, hence the gross N mineralization rate would be erroneously estimated. On the other hand, in soil where all compartments had low NH4 +-concentrations, heterogeneous distribution of 14NH4 +, 15NH4 + and microbial activity did not influence the measured gross N mineralization rate significantly.  相似文献   

13.
In organisms from all kingdoms of life, ammonia and its conjugated ion ammonium are transported across membranes by proteins of the AMT/Rh family. Efficient and successful growth often depends on sufficient ammonium nutrition. The proteins mediating this transport, the so called Ammonium Transporter (AMT) or Rhesus like (Rh) proteins, share a very similar trimeric overall structure and a high sequence similarity even throughout the kingdoms. Even though structural components of the transport mechanism, like an external substrate recruitment site, an essential twin histidine pore motif, a phenylalanine gate and the hydrophobic pore are strongly conserved and have been analyzed in detail by molecular dynamic simulations and mutational studies, the substrate(s), which pass the central pores of the AMT/Rh subunits, NH4+, NH3 + H+, NH4+ + H+ or NH3, are still a matter of debate for most proteins, including the best characterized AmtB protein from Escherichia coli. The lack of a robust expression system for functional analysis has hampered proof of structural and mutational studies, although the NH3 transport function for Rh-like proteins is rarely disputed. In plant transporters belonging to the subfamily AMT1, transport is associated with electrical currents, while some plant transporters, notably of the AMT2 type, were suggested to transport NH3 across the membrane, without associated ionic currents. Here we summarize data in favor of each substrate for the distinct AMT/Rh classes, discuss mutants and how they differ in structure and functionality. A common mechanism with deprotonation and subsequent NH3 transport through the central subunit pore is suggested.  相似文献   

14.
In organisms from all kingdoms of life, ammonia and its conjugated ion ammonium are transported across membranes by proteins of the AMT/Rh family. Efficient and successful growth often depends on sufficient ammonium nutrition. The proteins mediating this transport, the so called Ammonium Transporter (AMT) or Rhesus like (Rh) proteins, share a very similar trimeric overall structure and a high sequence similarity even throughout the kingdoms. Even though structural components of the transport mechanism, like an external substrate recruitment site, an essential twin histidine pore motif, a phenylalanine gate and the hydrophobic pore are strongly conserved and have been analyzed in detail by molecular dynamic simulations and mutational studies, the substrate(s), which pass the central pores of the AMT/Rh subunits, NH4+, NH3 + H+, NH4+ + H+ or NH3, are still a matter of debate for most proteins, including the best characterized AmtB protein from Escherichia coli. The lack of a robust expression system for functional analysis has hampered proof of structural and mutational studies, although the NH3 transport function for Rh-like proteins is rarely disputed. In plant transporters belonging to the subfamily AMT1, transport is associated with electrical currents, while some plant transporters, notably of the AMT2 type, were suggested to transport NH3 across the membrane, without associated ionic currents. Here we summarize data in favor of each substrate for the distinct AMT/Rh classes, discuss mutants and how they differ in structure and functionality. A common mechanism with deprotonation and subsequent NH3 transport through the central subunit pore is suggested.  相似文献   

15.
Increased brain ammonium (NH4 +/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4 +/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4 +/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4 +/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4 +/NH3, developed within 10–20 minutes and was maintained as long as the NH4 +/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4 +/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4 +/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4 +/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.  相似文献   

16.
The inducibility and kinetics of the NO3, NO2, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for and the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3 and NO2 transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3 was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2 and NH4+. The Km values for NO3, NO2, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3 transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.  相似文献   

17.
Summary This study was conducted to determine the effect of short term application of NH4NO3 on nodule function and to determine whether the rhizobial isolate used was a significant factor in this effect. Pea plants were inoculated with 10 differentRhizobium leguminosarum isolates and grown for 3 weeks in N-free medium before addition of 0, 1, 2 or 5 mM NH4NO3 for 2 to 7 days. Acetylene reduction and leghemoglobin content decreased with increasing exposure time to NH4NO3 and with increasing concentration of NH4NO3. NH 4 + and NO 3 depletion from the nutrient medium were assayed in plants exposed to 5 mM NH4NO3 and mean uptake rates were similar for each ion. There were significant differences among isolates in the rate of decrease of C2H2 reduction with increasing NH4NO3 concentration (C2H2 reduction responsiveness to NH4NO3) 4 and 7 days after addition of NH4NO3 but no differences after 2 days of exposure to NH4NO3. There were significant differences among isolates in NH 4 + depletion from the nutrient medium but these differences were not correlated with the differences observed in C2H2 reduction. Ranking of the isolates for C2H2 reduction responsiveness to NH4NO3 applied to plants with nodules was different from that obtained when NH4NO3 was applied at seeding. Isolates with varying sensitivity to NH4NO3 may be useful tools for determining the mechanisms responsible for inhibition of symbiotic N2 fixation by combined nitrogen. NRCC paper no. 25863.  相似文献   

18.
No single mechanism can provide an adequate explanation for the inhibition of photosynthesis when plants are supplied with ammonium (NH4+) as the sole nitrogen (N) source. We performed a hydroponic experiment using two N sources [5 mM NH4+ and 5 mM nitrate (NO3?)] to investigate the effects of NH4+ stress on the photosynthetic capacities of two wheat cultivars (NH4+‐sensitive AK58 and NH4+‐tolerant XM25). NH4+ significantly inhibited the growth and light‐saturated photosynthesis (Asat) of both cultivars, but the extent of such inhibition was greater in the NH4+‐sensitive AK58. The CO2 concentration did not limit CO2 assimilation under NH4+ nutrition; though both stomatal and mesophyll conductance were significantly suppressed. Carboxylation efficiency (CE), light‐saturated potential rate of electron transport (Jmax), the quantum efficiency of PSII (ΦPSII), electron transport rate through PSII [Je(PSII)], and Fv/Fm were significantly reduced by NH4+. As a result, NH4+ nutrition resulted in a significant increase in the production of hydrogen peroxide (H2O2) and superoxide anion radicals (O2??), but these symptoms were less severe in the NH4+‐tolerant XM25, which had a higher capacity of removing elevated reactive oxygen species (ROS). Thus, NH4+ N sources might decreased electron transport efficiency and increased the production of ROS, exacerbating damage to the electron transport chain, leading to a reduced plant photosynthetic capacity.  相似文献   

19.
The kinetics of the reductive amination reaction of lupine-nodule glutamate dehydrogenase (l-glutamate:NAD oxidoreductase (deaminating), EC 1.4.1.2) were found to vary with the identity of the ammonium salt which was used as a substrate. Normal Michaelis-Menten kinetics were obtained with (NH4)2SO4 but when NH4Cl or NH4-acetate was varied apparent substrate inhibition was observed. Linear double-reciprocal plots were obtained with NH4Cl and NH4-acetate, however, if the concentration of Cl? or acetate was maintained constant by adding KCl or K-acetate. Chloride and acetate were subsequently found to cause linear noncompetitive inhibition with respect to NH4+ and the apparent substrate inhibition by NH4Cl and NH4-acetate can be explained as the result varying a substrate and a noncompetitive inhibitor in constant ratio. Other anions were also found to be inhibitors of the glutamate dehydrogenase reaction; I? caused parabolic noncompetitive inhibition with respect to NH4+ and NO3? caused slope-parabolic noncompetitive inhibition with respect to all three substrates of the reductive amination reaction. For the oxidation deamination reaction, Cl? was a linear competitive inhibitor with respect to both NAD and l-glutamate whereas NO3? caused parabolic competitive inhibition with respect to these reactants. To explain the results, it is proposed that anions bind to an allosteric site and cause a change in some of the rate constants of the reaction. Specifically, the results are consistent with anions causing decreases in the rates of association of NADH and 2-oxoglutarate with the enzyme and an increase in the rate of dissociation of NAD.  相似文献   

20.
Overexpression of gonadotropin‐releasing hormone (GnRH) receptor in many tumors but not in normal tissues makes it possible to use GnRH analogs as targeting peptides for selective delivery of cytotoxic agents, which may help to enhance the uptake of anticancer drugs by cancer cells and reduce toxicity to normal cells. The GnRH analogs [d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH, [d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH, and [d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH were conjugated with doxorubicin (Dox), respectively, through N‐succinimidyl‐3‐maleimidopropionate as a linker to afford three new GnRH‐Dox conjugates. The metabolic stability of these conjugates in human serum was determined by RP‐HPLC. The antiproliferative activity of the conjugates was examined in GnRH receptor‐positive MCF‐7 human breast cancer cell line by MTT assay. The three GnRH‐Dox conjugates showed improved metabolic stability in human serum in comparison with AN‐152. The antiproliferative effect of conjugate II ([d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH‐Dox) on MCF‐7 cells was higher than that of conjugate I ([d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH‐Dox) and conjugate III ([d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH‐Dox), and the cytotoxicity of conjugate II against GnRH receptor‐negative 3T3 mouse embryo fibroblast cells was decreased in comparison with free Dox. GnRH receptor inhibition test suggested that the antiproliferative activity of conjugate II might be due to the cellular uptake mediated by the targeting binding of [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH to GnRH receptors. Our study indicates that targeting delivery of conjugate II mediated by [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH is a promising strategy for chemotherapy of tumors that overexpress GnRH receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号