首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To support a high growth rate of microorganism in fed-batch culture with high cell density, a modified DO-stat method was developed. In this method, an exponential substrate feed was coupled with the usual DO-stat method, i.e., a fixed amount of substrate per DO signal was exponentially fed to the culture based on the estimation of the substrate consumption rate and thereafter the feed was stopped in order to prevent the oversupply of substrate until an abrupt increase in the concentration of dissolved oxygen (DO) in the broth appeared. After that, the feed was started again and this cyclic operation was repeated throughout the cultivation. This method was applied to the fed-batch cultivation of ethanol utilizing yeast, Candida brassicae. At high cell densities (> 10 g/l), this modified method was more effective than the usual one in keeping a higher growth rate.  相似文献   

2.
Accurate and automatic control strategies for a feedback-control system of volatile carbon source feeding and dissolved oxygen (DO) level were investigated. To maintain the optimal ethanol concentration for microbial growth, carbon dioxide concentration in exhaust gas was used as a stepwise control parameter of ethanol feeding. A proportional-differential (PD) control program was used to correct the errors. The coefficient of stepwise control was calculated stoichiometrically, and parameters of PD were experimentally preset and were not changed during cultivation. DO was also controlled by the PD control and the stepwise program based on carbon dioxide concentration of the exhaust gas. Agitation speed and partial pressure of oxygen of the inlet gas were changed stepwise in accordance with the oxygen consumption rate. The stepwise coefficients were estimated from stoichiometry and material balance of molecular oxygen. The PD control program was only used for the agitation speed control to correct the fluctuations of DO level. The parameters did not need to be changed during cultivation. By use of these sophisticated control programs for fed-batch culture of Candida brassicae, ethanol concentration and DO level were accurately controlled at 3.4–3.7 g/l and 2.2–2.8 ppm, respectively, while cell mass concentration reached about 80 g/l. No manual operation was needed.  相似文献   

3.
In this research a fuzzy controller was built to perform fed-batch cultures of Saccharomyces cerevisiae with a DO-stat method. The basic principle of fed-batch culture employing the DO-stat method is that a rapid increase of dissolved oxygen concentration due to a lack of substrate (the DO signal) is used as an indicator for substrate feeding. The proposed fuzzy controller can diagnose the state of fermentation and determine a proper feed rate of substrate for the culture of high density and high yield. The results indicate that cell concentration reached to 110?g/l and residual sugar kept below the level of 0.05?g/l.  相似文献   

4.
The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production.  相似文献   

5.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

6.
The feeding of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Alcaligenes eutrophus ATCC17697 was optimized using a fed-batch culture system. The concentration of propionic acid was maintained at 3 g l–1 as growth was inhibited by propionic acid in the broth. A pH-stat substrate feeding system was used in which propionic acid was fed automatically to maintain a pH of the culture broth at 7.0. By feeding a substrate solution containing 20% (w/v) propionic acid, 4.9% (w/v) ammonia water [at a molar ratio of carbon to nitrogen (C/N molar ratio) of 10] in cell growth phase, the concentration of propionic acid in the broth was maintained at 3 g l–1 giving a specific growth rate of 0.4 h–1. To promote P(3HB-co-3HV) production, two stage fed-batch culture which consisted of the stage for the cell growth and the stage for the P(3HB-co-3HV) accumulation was carried out. When the substrate solution whose C/N molar ratio was 50 was fed in P(3HB-co-3HV) accumulation phase, the cell concentration and the P(3HB-co-3HV) content in the cells reached 64 g l–1 and 58% (w/w) in 55.5 h, respectively.  相似文献   

7.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

8.
9.
Fed-batch cultures of recombinant Escherichia coli HB101 were investigated to obtain high cell density and large amounts of β-galactosidase (β-gal). E. coli HB1010 was transformed with a hybrid plasmid pTREZ1, which contained a β-gal gene controlled by the trp promoter. In fed-batch cultures of recombinant E. coli, when the cell concentration reached around 13 g/l, the cell growth stopped and large amounts of inhibitory substances have accumulated in the broth. These inhibitory substances were isolated and identified. Acetate produced by the cells was evidently the main inhibitor of cell growth and β-gal production. Since the cells proved to assimilate acetate, the feed rate was controlled with acetate concentration monitoring in the fed-batch culture. As a result, the acetate concentration was maintained at a low level and cells grew smoothly without acetate-induced inhibition. Cell concentration and β-gal quantity reached high values of 28 g/l and 64 U/ml, respectively.  相似文献   

10.
Various processes which producel-lactic acid using ammonia-tolerant mutant strain,Rhizopus sp. MK-96-1196, in a 3 L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose concentration at 30 g/l, more than 140 g/l ofl-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200 g/l of initial glucose concentration, 121 g/L ofl-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture, 1.5 g/l/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of 0.024 h−1. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam, and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively, compared to that of batch culture. The fed-batch culture with highl-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production ofl-lactic acid.  相似文献   

11.
Batch kinetics for sorbitol to sorbose bioconversion was studied at 20% sorbitol concentration. The culture featured 90% conversion of sorbitol to sorbose in 20 hours. Increasing the initial substrate concentration in the bioreactor decreased the culture specific growth rate. At 40% initial sorbitol concentration no culture growth was observed. The batch kinetics and substrate inhibition studies were used to develop the Mathematical Model of the system. The model parameters were identified using the original batch kinetic data (S o =20%). The developed mathematical model was adopted to fed-batch cultivation with the exponential nutrient feeding. The fed-batch model was simulated and implemented experimentally. No substrate inhibition was observed in the fed-batch mode and it provided an overall productivity of 12.6?g/l-h. The fed-batch model suitably described the experimentally observed results. The model is ready for further optimization studies.  相似文献   

12.
We isolated about 500 isopropanol(IPA)-assimilating bacteria from many soil samples, among which 23 strains produced vitamin B12. Taxonomical studies of the best producer, designated strain Hi16.3, showed that it belonged to the genus Arthrobacter. Vitamin B12 production by the strain was higher than that by 12 other authentic Arthrobacter spp. using glucose as a sole carbon source. In fed-batch culture, the maximum production yield with strain Hi16.3 (named A. hyalinus) was 2 mg/l in the culture broth, when 80 ml of IPA/l broth was consumed.  相似文献   

13.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

14.
Microbial oxidation of D-sorbitol tol-sorbose byAcetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding highly concentrated sorbitol (600 g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24 h with a sorbose productivity of 13.40 g/L/h and a final sorbose concentration of 320.48 g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600 g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600 g/L sorbitol at a constant feed rate of 0.36 L/h till the full working capacity of the reactor. The fermentation was completed in 24 h with an enhanced sorbose productivity of 15.09 g/L/h and a sorbose concentration of 332.60 g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.  相似文献   

15.
The influence of various combinations of glycerol and lactose feed on the biosynthesis of two polyketide metabolites, lovastatin and (+)-geodin, by Aspergillus terreus ATCC20542 in a discontinuous fed-batch culture was presented. In these experiments lactose and/or glycerol were also used as the initial carbon substrates in the cultivation media. The application of glycerol feed, when lactose is the initial substrate, leads to the appreciable lovastatin concentration in the broth (122.4 mg l−1), nevertheless the abundant (+)-geodin level is at the same time obtained (255.5 mg l−1). The cultures with glycerol as the initial substrate and fed with lactose produce less lovastatin and (+)-geodin. The application of the various combined glycerol and/or lactose feeds allows for improving lovastatin production up to 161.8 mg l−1 and decreases (+)-geodin concentration to 98.7 mg l−1. The analysis of product formation rates and yield coefficients indicates that lovastatin is more efficiently produced on lactose, especially in the initial stages of the cultivation. Glycerol efficiently sustains fungal activity to form these polyketides in the late idiophase but it mainly favours (+)-geodin formation, if solely used in the feed. The feeds performed both with lactose and glycerol occur to be the most desired to maximise lovastatin and minimise (+)-geodin formation.  相似文献   

16.
Fed-batch culture strategy is often used for increasing production of heterologous recombinant proteins in Escherichia coli. This study was initiated to investigate the effects of dissolved oxygen concentration (DOC), complex nitrogen sources and pH control agents on cell growth and intracellular expression of streptokinase (SK) in recombinant E. coli BL21(DE3). Increase in DOC set point from 30% to 50% did not affect SK expression in batch culture where as similar increase in fed-batch cultivation led to a significant improvement in SK expression (from 188 to 720 mg l−1). This increase in SK could be correlated with increase in plasmid segregational stability. Supplementation of production medium with yeast extract and tryptone and replacement of liquid ammonia with NaOH as pH control agent further enhanced SK expression without affecting cell growth. Overall, SK concentration of 1120 mg l−1 representing 14-fold increase in SK production on process scale-up from flask to bioreactor scale fed-batch culture is the highest reported concentration of SK to date.  相似文献   

17.
A practical fed-batch culture, in which consumed amounts of methanol and other nutrients were supplied in response to a direct signal of the gas production of CH4 and CO2, was carried out for the cell production of methanol-utilizing Methanosarcina barkeri. In this fed-batch culture system equipped with level sensors to detect the gas production, a high cell concentration of 24.4 g/l was attained in 175-h cultivation maintaining the optimized nutrient concentrations of methanol, NH4+, PO43−, Na+, Mg2+, Ca2+, Fe2+, Ni2+, Co2+ and cysteine (S source) throughout the culture.  相似文献   

18.
Different fermentation processes, including batch, fed-batch and repeated fed-batch processes by Schizochytrium sp., were studied and compared for the effective DHA-rich microbial lipids production. The comparison between different fermentation processes showed that fed-batch process was a more efficient cultivation strategy than the batch process. Among the four different feeding strategies, the glucose concentration feed-back feeding strategy had achieved the highest fermentation results of final cell dry weight, total lipids content, DHA content and DHA productivity of 72.37, 48.86, 18.38 g l?1 and 138.8 mg l?1 h?1, respectively. The repeated fed-batch process had the advantages of reducing the time and cost for seed culture and inoculation between each fermentation cycles. The results of fermentation characteristics and lipid characterization of the repeated fed-batch process indicated that this repeated fed-batch process had promising industrialization prospect for the production of DHA-rich microbial lipids.  相似文献   

19.
Concern for the increasing occurrence of coastal zone hypoxia has generally focused on the direct, short-term impact of reduced dissolved oxygen (DO) concentrations on the survival of commercially important species such as fish and crabs. Copepods, especially the naupliar stages, are important pelagic food web components, yet only a few studies have considered the effect of reduced DO concentrations on their survival and population dynamics. This study considers the impact of both lethal and sublethal DO concentrations on copepods. Acartia tonsa were reared at 25 °C at saturating DO (normoxic control) and reduced (hypoxic) DO concentrations of 1.5 or 0.7 ml l−1. Oxygen concentrations were maintained in replicate flasks, by bubbling seawater with air (control), or mixtures of nitrogen and oxygen. Egg production, but not survival, was significantly higher in the controls compared to the 1.5 ml l−1 DO treatment. Survival and egg production were significantly lower at 0.7 ml l−1 DO compared to the control. The results suggest that the sublethal as well as the lethal effects of hypoxia may have important repercussions on population and community dynamics in coastal systems.  相似文献   

20.
Acarbose, a potent α-glucosidase inhibitor, is as an oral anti-diabetic drug for treatment of the type two, noninsulin-dependent diabetes. Actinoplanes utahensis ZJB-08196, an osmosis-resistant actinomycete, had a broad osmolality optimum between 309 mOsm kg−1 and 719 mOsm kg−1. Utilizing this unique feature, an fed-batch culture process under preferential osmolality was constructed through intermittently feeding broths with feed medium consisting of 14.0 g l−1 maltose, 6.0 g l−1 glucose and 9.0 g l−1 soybean meal, at 48 h, 72 h, 96 h and 120 h. This intermittent fed-batch culture produced a peak acarbose titer of 4878 mg l−1, increased by 15.9% over the batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号