首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of postimplantation rat embryos on days 9, 10, 11, and 12 of gestation to an in vitro heat shock of 43 degrees C for 30 min results in the induction of heat shock proteins (HSPs) in day 9 and 10 embryos, a severely attenuated response in day 11 embryos, and no detectable response in day 12 embryos. The heat shock response in day 9 embryos (presomite stage) is characterized by the synthesis of HSPs with molecular weights of 28-78 kDa. In heat shocked day 10 embryos, two additional HSPs are induced (34 and 82 kDa). In addition, two HSPs present on day 9 are absent on day 10. In day 11 heat shocked embryos, only three HSPs (31, 39, and 69 kDa) are induced, while in day 12 embryos no detectable HSPs are induced. Northern blot analysis of HSP 70 RNA levels indicates that the accumulation of this RNA, but not actin RNA, varies depending on developmental stage at the time of exposure to heat as well as the duration of the heat shock. Day 9 embryos exhibit the most pronounced accumulation of HSP 70 RNA while embryos on days 10-12 exhibit an increasingly attenuated accumulation of HSP 70 RNA, particularly after the more acute exposures (43 degrees C for 30 or 60 min). Thus, the ability to synthesize HSP 70 and to accumulate HSP 70 RNA changes dramatically as rat embryos develop from day 9 to day 12 (presomite to 31-35 somite stages).  相似文献   

2.
In response to heat shock (34°C, 30 min), cell morphology and actin organization in Dictyostelium discoideum are drastically changed. Loss of pseudopodia and disappearance of F-actin-containing structures were observed by using fluorescence microscopy. These changes were paralleled by a rapid decrease of the F-actin content measured by a TRITC-phalloidin binding assay. The effects of heat shock on cell morphology and actin organization are transient: After heat shock (34°C) or during a long-term heat treatment (30°C), cell morphology, F-actin patterns and F-actin content recovered/adapted to a state which is characteristic for untreated cells. Because F-actin may be stabilized by increased amounts of heat shock proteins, their response and interaction with F-actin was analyzed. After a 1 h heat treatment (34°C), the major heat shock protein of D. discoideum (HSP70) showed maximally increased synthesis rates and levels. During recovery from a 34°C shock or during a continuous heat treatment at 30°C, the HSP70 content first increased and then declined slowly toward normal levels. Pre-treatment of cells with a short heat shock of 30 min at 34°C stabilized the F-actin content when the cells were exposed to a second heat shock. Furthermore, a transient colocalization of HSP70 and actin was observed at the beginning of heat treatment (30°C) using immunological detection of HSP70 in the cytoskeletal actin fraction.  相似文献   

3.
《Insect Biochemistry》1989,19(7):679-686
The evolutionary conservation of the heat shock response suggests that plasmids containing promoters from Drosophila heat shock protein (hsp) genes will be useful in the development of gene transfer procedures for cell lines representing a variety of insect species. Conditions for induction of endogenous hsp genes and for expression of the chloramphenicol acetyltransferase (CAT) gene regulated by the Drosophila hsp 70 promoter were examined in Aedes albopictus (mosquito) cells. Five hsps, ranging in size from 27,000 to 90,000 D, were induced in A. albopictus cells during incubation at 41°C in medium containing [35S]methionine. Relative synthesis of these proteins at 37 and 41°C indicated that Aedes hsp 66 is homologous to Drosophila hsp 70. Detection of CAT activity in transfected mosquito cells was enhanced 10-fold under heat shock conditions (6 h, 41°C) based on maximal expression of hsp 66, relative to conditions defined for expression of hsp 70 in Drosophila cells. Analysis of the endogenous heat shock response may be essential to the optimal use of plasmids containing the Drosophila hsp 70 promoter with other insect cell types.  相似文献   

4.
The level of HSP 70 mRNA is altered in Trypanosoma cruzi cells incubated at supra-optimal temperatures: the total amount of this RNA per cell is increased at 37°C, and slightly decreased at 40°C relative to its level at 29°C. However, its amount is greater in the polysomes at either temperature. The relative increase of this RNA is larger in the polysomes fraction than it is in the total RNA. In addition the level of HSP 70 protein in heat-shocked cells is greater than would be expected from the recruitment of HSP 70 mRNA in the polysomal fraction. Taken together the data are interpreted as indicating that at 37°C and 40°C the HSP 70 gene regulation in T. cruzi involves both the selective accumulation of the HSP 70 mRNA in the polysomes and its preferential translation. At 37°C, in addition, an increase in the total amount of this template is observed in the cells.  相似文献   

5.
Heat shock response of Dictyostelium   总被引:24,自引:0,他引:24  
In response to a shift from 22 to 30°C the relative rate of synthesis of a small number of proteins is dramatically increased in Dictyostelium discoideum. The cells neither grow nor develop at this temperature but die slowly with a half-life of 18 hr. The major protein synthesized in response to a heat shock to 30°C in either growing cells or developing cells has an apparent molecular weight of 70,000 (70K). An increase in the relative rate of synthesis of 70K can be seen as early as 20 min following heat shock. Synthesis of 70K remains high for 4 hr at 30°C and then decreases. Similar kinetics of 70K synthesis occur during recovery at 22°C following a 1-hr heat shock. RNA synthesis during the first half-hour of heat shock is essential for the high rate of 70K measured 2 hr later. By isoelectric focusing the 70K protein can be separated into two spots, one of which overlaps one of the major heat shock proteins of Drosophila melanogaster. The relative rate of synthesis of several other proteins (82K, 60K, 43K) increases less dramatically in Dictyostelium during heat shock at 30°C. A heat shock to 34°C results in rapid synthesis of these proteins but not of 70K. The relative rates of synthesis of most other proteins made at 22°C decreases, most notably that of actin. Synthesis of heat shock proteins at 30°C does not significantly affect viability at 30°C but dramatically prolongs the period of time the cells can survive at 34°C. Thus, 30°C appears to be a stasis condition for Dictyostelium which elicits a response essential for protection from lethal temperatures. The similarity of the heat shock response in Dictyostelium to that in Drosophila and vertebrate cells suggests that certain aspects of the response may be universal in eukaryotes.  相似文献   

6.
7.
The low molecular weight (LMW) heat shock protein (HSP), HSP16.6, in the unicellular cyanobacterium, Synechocystis sp. PCC 6803, protects cells from elevated temperatures. A 95% reduction in the survival of mutant cells with an inactivated hsp16.6 was observed after exposure for 1 h at 47°C. Wild-type cell survival was reduced to only 41%. HSP16.6 is also involved in the development of thermotolerance. After a sublethal heat shock at 43°C for 1 h and subsequent challenge exposure at 49°C for 40 min, mutant cells did not survive, while 64% of wild-type cells survived. Ultrastructural changes in the integrity of thylakoid membranes of heat-shocked mutant cells also are discussed. These results demonstrate an important protective role for HSP16.6 in the protection of cells and, in particular, thylakoid membrane against thermal stress. Received: 14 October 1999 / Accepted: 16 November 1999  相似文献   

8.
Since both heat and sodium arsenite induce thermotolerance, we investigated the differences in synthesis and redistribution of stress proteins induced by these agents in Chinese hamster ovary cells. Five major heat shock proteins (HSPs; Mr 110, 87, 70, 28, and 8.5 kDa) were preferentially synthesized after heat for 10 min at 45.5 degrees C, whereas four major HSPs (Mr 110, 87, 70, and 28 kDa) and one stress protein (33.3 kDa) were preferentially synthesized after treatment with 100 microM sodium arsenite (ARS) for 1 hr. Two HSP families (HSP70a,b,c, and HSP28a,b,c) preferentially relocalized in the nucleus after heat shock. In contrast, only HSP70b redistributed into the nucleus after ARS treatment. Furthermore, the kinetics of synthesis of each member of HSP70 and HSP28 families and their redistribution were different after these treatments. The maximum rates of synthesis of HSP70 and HSP28 families, except HSP28c, were 6-9 hr after heat shock, whereas those of HSP70b and HSP28b,c were 0-2 hr after ARS treatment. In addition, the maximum rates of redistribution of HSP70 and HSP28 families occurred 3-6 hr after heat shock, whereas that of HSP70b occurred immediately after ARS treatment. The degree of redistribution of HSP70b after ARS treatment was significantly less than that after heat treatment. These results suggest that heat treatment but not sodium arsenite treatment stimulates the entry of HSP70 and HSP28 families into the nucleus.  相似文献   

9.
When Drosophila tissue culture cells are shifted from 25 to 36°C (heat shocked) the pre-existing mRNAs (25°C mRNAs) remain in the cytoplasm but their translation products are underrepresented relative to the induced heat shock proteins. Many of these undertranslated 25°C mRNAs are found in association with polysomes of similar size in heat-shocked and control cells. Furthermore, the messages encoding α-tubulin, β-tubulin, and actin are found associated with one-third to one-half as many total ribosomes in heat-shocked cells as in cells incubated at 25°C. Increased temperature should lead to increased output of protein per ribosome. However, the 25°C proteins are actually synthesized at less than 10% of 25°C levels in heat-shocked cells. Thus, the rates of both elongation and initiation of translation are significantly (15- to 30-fold) slower on 25°C mRNAs than they are on heat shock mRNAs in heat-shocked cells.  相似文献   

10.
Exercise causes heat shock (muscle temperatures of up to 45 degrees C, core temperatures of up to 44 degrees C) and oxidative stress (generation of O2- and H2O2), and exercise training promotes mitochondrial biogenesis (2-3-fold increases in muscle mitochondria). The concentrations of at least 15 possible heat shock or oxidative stress proteins (including one with a molecular weight of 70 kDa) were increased, in skeletal muscle, heart, and liver, by exercise. Soleus, plantaris, and extensor digitorum longus (EDL) muscles exhibited differential protein synthetic responses ([3H]leucine incorporation) to heat shock and oxidative stress in vitro but five proteins (particularly a 70 kDa protein and a 106 kDa protein) were common to both stresses. HSP70 mRNA levels were next analyzed by Northern transfer, using a [32P]-labeled HSP70 cDNA probe. HSP70 mRNA levels were increased, in skeletal and cardiac muscle, by exercise and by both heat shock and oxidative stress. Skeletal muscle HSP70 mRNA levels peaked 30-60 min following exercise, and appeared to decline slowly towards control levels by 6 h postexercise. Two distinct HSP70 mRNA species were observed in cardiac muscle; a 2.3 kb mRNA which returned to control levels within 2-3 h postexercise, and a 3.5 kb mRNA species which remained at elevated concentrations for some 6 h postexercise. The induction of HSP70 appears to be a physiological response to the heat shock and oxidative stress of exercise. Exercise hyperthermia may actually cause oxidative stress since we also found that muscle mitochondria undergo progressive uncoupling and increased O2- generation with increasing temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have cloned a human gene encoding the 70,000-dalton heat shock protein (HSP70) from a human genomic library, using the Drosophila HSP70 gene as a heterologous hybridization probe. The human recombinant clone hybridized to a 2.6-kilobase polyadenylated mRNA from HeLa cells exposed to 43 degrees C for 2 h. The 2.6-kilobase mRNA was shown to direct the translation in vitro of a 70,000-dalton protein similar in electrophoretic mobility to the HSP70 synthesized in vivo. From the analysis of S1 nuclease-resistant mRNA-DNA hybrids, the HSP70 gene appears to be transcribed as an uninterrupted mRNA of 2.3 kilobases. We show that the cloned HSP70 gene contains the sequences necessary for heat shock-induced expression by two criteria. First, hamster cells transfected with a subclone containing the HSP70 gene and flanking sequences synthesized a HSP70-like protein upon heat shock. Second, human cells transfected with a chimeric gene containing the 5' flanking sequences of the HSP70 gene and the coding sequences of the bacterial chloramphenicol acetyltransferase gene transcribed the chimeric gene upon heat shock. We show that the HSP70 mRNA transcribed in an adenovirus 5 transformed human cell line (293 cells) is identical to the HSP70 mRNA induced by heat shock.  相似文献   

12.
In this study, we analyzed the response of the temperate, shallow-water gorgonian, Leptogorgia virgulata, to temperature stress. Proteins were pulse labeled with (35)S-methionine/cysteine for 1 h to 2 h at 22 degrees C (control), or 38 degrees C, or for 4 h at 12.5 degrees C. Heat shock induced synthesis of unique proteins of 112, 89, and 74 kDa, with 102, 98 and 56 kDa proteins present in the control as well. Cold shock from 22 degrees C-12.5 degrees C induced the synthesis of a 25 kDa protein, with a 44 kDa protein present in the control as well. Control samples expressed unique proteins of 38, and 33 kDa. Non-radioactive proteins expressed under the same conditions as above, as well as natural field conditions, were tested for reactivity with antibodies to heat shock proteins (HSPs). HSP60 was the major protein found in L. virgulata. Although HSP47, HSP60, and HSP104 were present in all samples, the expression of HSP60 was enhanced in heat stressed colonies, while HSP47 and HSP104 expression were greatest in cold shocked samples. Inducible HSP70 was expressed in cold-shocked, heat-shocked, and field samples. Constitutively expressed HSP70 was absent from all samples. The expression of HSP90 was limited to heat shocked colonies. The expression of both HSP70 and HSP104 suggests that the organism may also develop a stress tolerance response.  相似文献   

13.
Upon heat shock, Drosophila Kc cells still contain normal cellular messenger RNAs in the cytoplasm. The distribution of these 25°C mRNAs between polysomes and the postpolysomal fraction of heat-shocked cells appears unaltered as compared with control cells. The translatability of these normal cellular messages isolated from heat-shocked and non-heat-shocked Kc cells is unaltered when analyzed by in vitro translation in the rabbit reticulocyte lysate. In contrast, homologous cell-free translation systems obtained from Kc cells effectively discriminate between the in vitro translation of normal cellular messages and heat-shock-specific mRNAs. In particular, a cell-free system from heat-shocked Drosophila Kc cells almost completely shuts down the translation of 25°C messenger RNA species, whereas the translatability of heat-shock-specific messenger RNA appears to be unaffected.  相似文献   

14.
15.
16.
The effects of thermal stress on the induction of heat shock proteins (HSPs) were examined in northern bay scallops, Argopecten irradians irradians, a relatively heat tolerant estuarine species, and sea scallops, Placopecten magellanicus, a species residing in cooler, deeper water. Polyclonal antibodies used in this work for analysis of inducible HSP70 and HSP40 only recognized proteins of 72 and 40 kDa respectively from the mantles of both scallop species. Additionally, HSP quantification using the antibody to HSP70 was equally effective by either immunoprobing of western blots or ELISA, demonstrating that either approach could be successfully employed for analysis of thermal response in scallops. Sea scallop HSP70 and HSP40 did not change when animals were heat-shocked for 3 h by raising the temperature from 10 °C to 20 °C; however, a 24 h treatment of the same magnitude elicited a significant response. Conversely, bay scallops displayed rapid and prolonged HSP70 and HSP40 responses during the recovery period following a 3 h heat shock from 20 °C to 30 °C. Temperature reduction from 20 °C to 3 °C for 3 h also caused significant HSP70 and HSP40 increases in bay scallops; this represents the first time cold shock was shown to induce HSP synthesis in bivalve mollusks. The onset of the HSP40 response was more rapid than for HSP70, occurring at the end of the cold shock itself prior to transfer to a recovery temperature. Both proteins responded maximally during recovery at control temperature. HSP responses of sea and bay scallops to thermal stress may be related to their habitat in the natural environment and they suggest a differential capacity for adaptation to temperature change. This is an important consideration in assessing the response of these scallops to different culture conditions.  相似文献   

17.
The synthesis of a major heat shock protein (HSP 70) was measured in HeLa cells incubated at 42.5 degrees C and then transferred to 37 degrees C or 30 degrees C. After 90 min, synthesis of HSP 70 decreased by 54 and 85%, respectively, whereas HSP 70 mRNA was reduced at most by 20%. Therefore, the reduced synthesis of HSP 70 could not be accounted for by mRNA turnover. HSP 70 was associated with large polyribosomes (6-10 ribosomes) in cells kept at 42.5 degrees C, but with medium or small polyribosomes in cells transferred to 37 degrees C or 30 degrees C (5-6 or 2-3 ribosomes, respectively). Addition of puromycin to these cells resulted in the release of all ribosomes from HSP 70 mRNA, indicating that they were translationally active. The regulation of HSP 70 synthesis was investigated in cell-free systems prepared from heat-shocked or control cells and incubated at 30 degrees C and 42 degrees C. After 5 min at 42 degrees C, the cell-free system from heat-shocked cells synthesized protein at 3 times the rate of the control cell-free system. This difference was in large part due to synthesis of HSP 70. Addition of HSP mRNA to the control cell-free system stimulated protein synthesis at 42 degrees C, but not at 30 degrees C. These findings suggest that translation of HSP 70 mRNA is specifically promoted at high temperature and repressed during recovery from heat shock by regulatory mechanisms active at the level of initiation.  相似文献   

18.
19.
Temperature tolerances (including lethal limits) and associated rates of thermal acclimation of fish are critical information in predicting fish responses to global climate changes. In this study, a partial sequence of the heat shock protein 70 gene (HSP70) from the fish species Channa striatus was isolated and characterized. Evolutionary process that led to the diversity of HSP70 specific to vertebrates was also analysed. Results revealed that HSP70 is highly homologous in other fish families. The conservation of the HSP 70 gene among fish families could be driven by forces of natural selection due to climatic change. We exposed C. striatus to heat shock (32 °C) and cold shock (16 °C) respectively, in order to examine the differences of temperatures in influencing the expression patterns of HSP70. We revealed that expression of HSP70 was higher at 32 °C than at 16 °C in most of the organs. Specifically, occurrence of chaperone activity of HSP70 was found at low temperature. Therefore, this fish was postulated that to seems to be able to survive at lower temperature compared to higher temperature indicating there is force of natural selection acting towards this HSP 70 gene. This will demonstrate the effect of global warming towards the fish survivability.  相似文献   

20.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号