首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Acetylcholine reduced atrial contractions by 82.5% in guinea pig, 50.8% in rat, and 41.5% in rabbit. 2. The EC50 values for the negative inotropic effect of acetylcholine were 3.3 x 10(-7) M in rat and guinea pig atria and 4.1 x 10(-6) M in rabbit atria. 3. There was no correlation between the species differences in the negative inotropic effect of acetylcholine in atria and the density or affinity of acetylcholinesterase or muscarinic receptors. 4. Inhibition of atrial acetylcholinesterase with soman reduced the EC50 of acetylcholine three-fold in all species, but did not change the maximal inotropic effect of acetylcholine. 5. Species differences in the negative inotropic effect of acetylcholine may be caused by differences in the coupling between myocardial muscarinic receptors and the ion channels that mediate negative inotropy.  相似文献   

2.
Vanadate produces a positive inotropic effect on ventricular muscle from rat, rabbit, guinea pig and cat; a positive inotropic effect on the atria of rat and rabbit, but a negative inotropic effect on the atria of guinea pig and cat. The effects of vanadate are completely reversible and occur in a concentration range of 10?5M to 10?3M. In this same concentration range, vanadate also causes a marked activation of cardiac adenylate cyclase suggesting that the positive inotropic action might be due in part to an elevation of cyclic AMP levels. The effects of vanadate are not influenced by alprenolol, cimetidine, or mepyramine, indicating a lack of involvement of β-adrenergic or histamine H2 and H1 receptors.  相似文献   

3.
The inotropic and chronotropic actions of prostaglandin (PG) types PGE1, PGA1, and PGF were studied in isolated guinea pig right and left atria, and papillary muscles; rabbit atria; and toad ventricular strips in order to more completely define the cardiac contractile properties of PG. All three prostaglandins, in muscle bath concentrations of 10μg/ml, exerted positive inotropic and chronotropic actions on guinea pig atrium. These contractile effects were persistent after removal of PG from the muscle bath and appeared to limit the relative response to a subsequent dose of PG. The inotropic action of PGE1 was present over a wide range of bath calcium concentrations (1.1 to 4.4 mM/L). Beta adrenergic receptor blockade, histamine blockade, and pretreatment with reserpine failed to significantly affect the inotropic actions of PG. Norepinephrine and histamine produced more potent inotropic and chronotropic effects on guinea pig atria than did PG and these contractile effects did not exhibit persistence or tachyphylaxis. The prostaglandins did not significantly affect dose response curves for norepinephrine inotropic and chronotropic actions. The prostaglandins had no effect on the force or frequency of contraction in rabbit atria. PGE1 exerted a positive inotropic effect on toad ventricular myocardium whereas PGA1 had no effect and PGF had a negative inotropic action.  相似文献   

4.
We created a simple method based on curve fitting in order to assess the concentration of pharmacological agonists or antagonists in the microenvironment of the receptors. We tested our method in electrically driven guinea pig left atria by estimating the concentration of N6-cyclopentyladenosine (CPA; A1 adenosine receptor agonist), acetyl-β-methylcholine (muscarinic receptor agonist) and verapamil (L-type Ca2+ channel inhibitor) added previously to the atria in known amounts. Our results validated the fitness of the model under specified conditions. In addition, our data suggest a relatively slow elimination of CPA in isolated, practically bloodless guinea pig atrial myocardium.  相似文献   

5.
The muscarinic receptors in membranes prepared from guinea pig brain were studied using a radiolabeled antagonist, [3H]quinuclidinyl benzilate (QNB). The apparent dissociation constant of the QNB-receptor complex (K d ) was similar in all regions, but the concentration of receptors was highest in the striatum, cerebral cortex, and hippocampus and lowest in the cerebellum. Similar distributions have been reported for other species, although the concentration of receptors in guinea pig brain is higher than in other species. Acetylcholine inhibited QNB binding with a Hill coefficient of 0.4–0.6. The concentration of acetylcholine required to inhibit binding by 50% (I50) was lowest in the brain stem and more than 10 times higher in the hippocampus. Similar results have been reported for mouse brain. The activity of acetylcholinesterase was highest in the striatum, where the concentration of muscarinic receptors is highest, but did not vary greatly in other brain regions.RMD was seconded to the University of Melbourne to undertake this study.  相似文献   

6.
The aim of the present study was to investigate the effect of hyperthyroidism on the trans-sarcolemmal adenosine (Ado) flux via equilibrative and nitrobenzylthioinosine (NBTI)-sensitive nucleoside transporters (ENT1) in guinea pig atria, by assessing the change in the Ado concentration of the interstitial fluid ([Ado]ISF) under nucleoside transport blockade with NBTI. For the assessment, we applied our novel method, which estimates the change in [Ado]ISF utilizing the altered inotropic response to N6-cyclopentyladenosine (CPA), a relative stable selective agonist of A1 Ado receptors, by providing a relative index, the equivalent concentration of CPA. Our results show an interstitial A do accumulation upon ENT1 blockade, which was more extensive in the hyperthyroid samples (CPA concentrations equieffective with the surplus [Ado]ISF were two to three times higher in hyperthyroid atria than in euthyroid ones, with regard to the negative inotropic effect of CPA and Ado). This suggests an enhanced Ado influx via ENT1 in hyperthyroid atria. It is concluded that hyperthyroidism does not alter the prevailing direction of the Ado transport, moreover intensifies the Ado influx in the guinea pig atrium.  相似文献   

7.
Various species have been used as models to study the effects of adenosine (ADO) on atrial and ventricular myocardium, but few direct tissue comparisons between species have been made. This study further characterizes adenosine A(1) receptor binding, adenylate cyclase activity and direct and indirect A(1) receptor-mediated functional activity in atrial and ventricular tissue from Sprague-Dawley rats and Hartley guinea pigs. Rat right atria (RA) were found to be significantly more sensitive to cyclopentyladenosine (CPA), while guinea pig left atria (LA) were more sensitive to CPA. After the addition of isoproterenol (ISO), the reduction of CPA response in rat RA was significantly greater than in guinea pig; however, after ISO treatment, the guinea pig LA was more sensitive to CPA than the rat. Adenylate cyclase inhibition by CPA was significantly greater in atria and ventricles obtained from guinea pig than rat. In competition binding experiments, guinea pig RA had significantly more high affinity sites than rat, but the K(i)s were not significantly different. There were no significant differences between guinea pig LA and rat LA. Guinea pig ventricular tissue had fewer high affinity sites than rat without any differences in their K(i) values. In antagonist saturation experiments, the density and affinity of A(1) receptors in guinea pig cardiac membranes were significantly greater than in rat. Our results indicate definite species differences as well as tissue differences between rat and guinea pig. These differences must be considered when interpreting studies using rat and guinea pig tissue as models for cardiac function.  相似文献   

8.
Choline is a necessary substrate of the lipid membrane and for acetylcholine synthesis. Accumulating evidence indicates that besides being a structural component, choline is also a functional modulator of the membrane. It has been shown to be a muscarinic acetylcholine receptor (mAChR) agonist and can induce a novel K+ current in cardiac cells. However, the potential role of choline in modulating cardiac functions remained unstudied despite that mAChRs are known to be important in regulating heart functions. With microelectrode techniques, we found that choline produced concentration-dependent (0.1∼10 mm) decreases in sinus rhythm and action potential duration in isolated guinea pig atria. The effects were reversed by 2 nm 4DAMP (an M3-selective antagonist). Whole-cell patch-clamp recordings in dispersed myocytes from guinea pig and canine atria revealed that choline is able to induce a K+ current with delayed rectifying properties. The choline-induced current was suppressed by low concentrations of 4DAMP (2∼10 nm). Antagonists toward other subtypes (M1, M2 or M4) all failed to alter the current. The affinity of choline (K d ) at mAChRs derived from displacement binding of [3H]-NMS in the homogenates from dog atria was 0.9 mm, consistent with the concentration needed for the current induction and for the HR and APD modulation. Our data indicate that choline modulates the cellular electrical properties of the hearts, likely by activating a K+ current via stimulation of M3 receptors. Received: 1 December 1998/Revised: 12 February 1999  相似文献   

9.
The inotropic responses to prostaglandins (PG) A1, E1, E2 and F were studied in isolated cat myocardial tissue. PGA1 and F exhibited no significant inotropic effects, whereas, PGE2 and PGE1 produced negative inotropic effects at concentrations of 2.8 × 10−7 and 2.8 × 10−6 M in isolated cat papillary muscles.In isolated perfused cat hearts, PGE1 (2.8 × 10−6M) produced a negative inotropic effect along with a significant increase in coronary flow. As flow declined, the negative inotropic effect became more severe. PGE1 at 2.8 × 10−9 M produced a sustained increase in coronary flow and oxygen consumption with no inotropic effect. PGE2 and F did not exert significant changes in coronary flow or contractile force.Thus prostaglandins do not appear to exert significant positive inotropic effects at physiologic or at generally accepted pharmacologic concentrations in isolated cat heart preparations. At extremely high concentrations, prostaglandins E1 and E2 exert a negative inotropic effect; however, this would not explain the protective effect of these prostaglandins in circulatory shock.  相似文献   

10.
1. The cardiac responses of isolated frog (Rana tigrina) atria to peptide hormones were studied.2. Calcitonin gene-related peptide (CGRP), arginine vasotocin (AVT), bovine parathyroid hormone fragment (bPTH-(1–34)) and oxytocin (OXY) produced dose-related positive chronotropic and inotropic responses; atrial natriuretic peptide (ANP) was negative chronotropic and inotropic; cholecystokinin (CCK), vasoactive intestinal peptide (VIP) were without effects.3. The dose-related responses under bPTH-(1–34) stimulation but not CGRP or AVT were attenuated in the presence of ANP (300 ng/ml, ≈0.98 × 10−7 M). As expected ANP decreased the basal AR and AT responses of the isolated atria and the inhibitory effects were dose-dependent.4. As shown previously, propranolol blocked the atrial tension stimulated by bPTH (1–34) but did not alter the cardiac responses to CGRP and AVT.5. In the presence of β-adrenergic blocker (propranolol 10−7M) or ANP (10−7M), the AR and AT changes under ISO stimulation in the frog were also decreased.6. These cardiac changes suggest the cardiac inhibitory effects of ANP are related to β-adrenoceptor activity and ANP might be a β antagonist.  相似文献   

11.
《Life sciences》1997,60(25):PL377-PL382
The effect of the histamine H2 receptor agonist dimaprit on intestinal contractility was characterized on smooth muscle cells isolated from the longitudinal muscle of the guinea pig ileum. Dimaprit exerted two opposite effects on the contractility of isolated muscle cells: relaxation of cholecystokinin octapeptide (CCK-S)-induced contractions in the range of concentrations 10−17-10−13 M and contraction at concentrations higher than 10−13 M. The relaxant effect of dimaprit was totally prevented by the H2 blocker famotidine (10−7 M), which, at the same time, enhanced the contractile effect of dimaprit, shifting to the left the concentration-response curve to the agonist. This contraction was not modified by the histamine H1 receptor antagonists pyrilamine and temelastine, tested both at 10−7 M. By contrast, atropine 10−8 M abolished the contractile effect of dimaprit, while leaving unchanged the response to CCK-8. Our results clearly indicate that longitudinal muscle cells of the guinea pig ileum possess inhibitory H2 receptors, which can be activated by very low concentrations of dimaprit; moreover, they revealed that dimaprit can have non-histaminergic effects, probably due to muscarinic receptor activation; however, concentrations about 10000 times higher than those necessary to activate H2 receptors, are required.  相似文献   

12.
Abstract

Guanine nucleotide binding (G) proteins are heterotrimers that couple a wide range of receptors to ionic channels. The coupling may be indirect, via cytoplasmic agents, or direct, as has been shown for two K+ channels and two Ca2+ channels. One example of direct G protein gating is the atrial muscarinic K+ channel K+ [ACh], an inwardly rectifying K1 channel with a slope conductance of 40 pS in symmetrical isotonic K+ solutions and a mean open lifetime of 1.4 ms at potentials between -40 and - 100 mV. Another is the clonal GH, muscarinic or somatostatin K+ channel, also inwardly rectifying but with a slope conductance of 55 pS. AG protein, G., purified from human red blood cells WC) activates K+[ACh] channels at subpicomolar concentrations; its a subunit is equi-potent. Except for being irreversible, their effects on gating precisely mimic physiological gating produced by muscarinic agonists. The αk effects are general and are similar in atria from adult guinea pig, neonatal rat, and chick embryo. The hydrophilic βγ from transducin has no effect while hydropho-bic βγ from brain, hRBCs, or retina has effects at nanomolar concentrations which in our hands cannot be disSociated from detergent effects. An anti-αk monoclonal antibody blocks muscarinic activation, supporting the concept that the physiological mediator is the a subunit not the βγ dimer. The techniques of molecular biology are now being used to specify G protein gating. A “bacterial” αi-3 expressed in Escherichia coli using a pT7 expression system mimics the gating produced by hRBC αk.  相似文献   

13.
Abstract: The pharmacological properties of acetylarsenocholine, an arsenic analogue of acetylcholine, were investigated. Acetylarsenocholine behaved as a cholinergic ligand both in the central and peripheral nervous system. It bound to nicotinic receptors in rat medulla-pons with a K D of 15 μ M and to muscarinic receptors in rat cerebral cortex with a K D of 10 μ M . It behaved also as an agonist at presynaptic muscarinic receptors in guinea pig ileum myenteric plexus preparation. Arsenocholine is an alternative substrate for choline acetyltransferase and acetylarsenocholine is an alternative substrate for acetylcholinesterase.  相似文献   

14.
M L Cohen  A S Landry 《Life sciences》1980,26(10):811-822
Vasoactive intestinal polypeptide (VIP) was examined in vitro for effects on tone and neuronal release mechanisms in intestinal smooth muscle since this is a site of high peptide concentration. VIP contracted the guinea pig ileum and rabbit jejunum in concentrations ranging from 10?9 to 10?7 M. Increased tone in the guinea pig ileum was partially antagonized by the anticholinergic agent, atropine (4.38 × 10?6 M) suggesting that one component of the contractile response was due to the indirect release of acetylcholine. The H1 receptor antagonist, pyrilamine, did not alter the increased tone produced by VIP indicating that histamine release did not contribute to the ileal contractile response and that VIP exerted a selective effect to enhance neuronal release of acetylcholine. The ability of VIP to modulate acetylcholine release was confirmed in field stimulated ileal preparations where VIP increased the force developed to endogenously released acetylcholine without altering the direct response to acetylcholine. In rabbit jejunum and ileal smooth muscle, VIP related cyclic AMP levels. However, inhibition of phosphodiesterase with papaverine did not potentiate either the VIP-induced ileal contraction or enhancement of the field stimulated response. This raises the possibility that increases in intestinal cyclic AMP may be involved more in VIP-induced alterations in ion transport or secretory phenomenon than in intestinal motility. These studies describing the ability of VIP to modulate acetylcholine release and to increase ileal tone are consistent with the proposed role of VIP in intestinal patholgies involving excessive mucous secretion and motility.  相似文献   

15.
Recently we have been successful in isolating an endogenous negative inotropic factor (ENIF) from porcine left ventricular tissue. In this study, we have characterized its pharmacological properties. The results of the study demonstrated that ENIF produces a concentration-dependent negative inotropic response on both guinea pig left atria and right ventricular trabeculae. The maximal reduction in contractile force produced by 300 ul of ENIF (5 ml bath) on atria and trabeculae were 90.0 ± 0.8% and 77.5 ± 6%. Atria, however, was significantly more sensitive to ENIF than trabeculae. The ED 50 of ENIF for atria was found to be 38 ul as opposed to ED 50 of 100 ul of ENIF for trabeculae.Acetylcholine (ACh), a muscarinic receptor agonist, decreased the contractile force of guinea pig atria in a dose-dependent manner with a maximal decline in the contractile force of 90%. However, none of the concentration of ACh used affected the contractile function of the trabeculae. Atropine (1 uM) completely blocked the negative inotropic response on atria of all the doses of ACh used. The same dose of atropine, however, was unable to influence the negative inotropic effect of any of the doses of ENIF used on either the atria or trabeculae preparations in our study. The maximal decline in the contractile force of atria was e.g. 94 and 95% in the presence and absence of atropine respectively. These data demonstrate that the myocardial negative inotropic effect of ENIF is not mediated via the cholinegic receptor mechanism.  相似文献   

16.
In isolated mouse left atria, acetylcholine (ACh) produced a biphasic inotropic response; a transient decrease in developed tension was followed by an increase. Both negative and positive responses were concentration dependent and were inhibited by atropine. The negative and positive inotropic responses were also observed with a nonselective muscarinic stimulant, oxotremorine-M, but not with an M1-receptor selective stimulant, McN-A343. Pirenzepine, an M1-receptor antagonist, inhibited both negative and positive inotropic responses at high concentrations. Gallamine, an M2-receptor antagonist, inhibited the negative response. Hexahydro-siladifenidol hydrochloride, p-fluoro analog (p-F-HHSiD), an M3-receptor antagonist, inhibited the positive response with no effect on the negative phase. In pertussis toxin (PTX) treated preparations, negative inotropic response to ACh was not observed. These results suggest that the negative and positive inotropic responses to acetylcholine in mouse atria are mediated by M2 and M3 receptors, respectively. The negative phase, but not the positive phase, was mediated by a PTX-sensitive G protein.  相似文献   

17.
Dipyridamole (DPR) and nitrobenzylthioinosine (NBI) inhibition of adenosine accumulation in synaptoneurosomes derived from rat cerebral cortex, rat cerebellum, guinea pig cerebral cortex and guinea pig cerebellum was investigated. The inhibition of adenosine accumulation by NBI was observed to be distinctly biphasic in both guinea pig and rat synaptoneurosomes. Such biphasic inhibition consisted of a nM potency component to inhibition, accounting for 20–30% of the maximum inhibition, and a μM potency component, accounting for the remaining 70–80% maximum inhibition. Such an inhibitory profile contrasts sharply with that of DPR which appears monophasic, with a mean IC50 of between 10−7 M and 10−6 M, in all rat and guinea pig synaptoneurosomes preparations studied.Further differences between the potency of NBI and DPR in inhibiting [3H]adenosine accumulation were also noted. DPR was more potent in inhibiting [3H]adenosine accumulation in guinea pig cerebellar synaptoneurosomes than in cerebral cortex synaptoneurosomes. In rat synaptoneurosomes, the reverse selectivity was observed. DPR was also 2–6 fold (depending on brain region of comparison) more potent in inhibiting adenosine accumulation in guinea pig synaptoneurosomes than in inhibiting such accumulation in rat synaptoneurosomes. In contrast, NBI was approximately equipotent in inhibiting adenosine accumulation in rat and guinea pig synaptoneurosomes. Additional binding studies using [3H]NBI are also reported. The data presented are entirely consistent with the hypotheses that (1) NBI and DPR bind to functionally relevant sites and (2) there are different populations of nucleoside transporters in mammalian brain.  相似文献   

18.
Isolated congenital heart block may be associated with Primary Sjogren's Syndrome. In this work we demonstrated that IgG present in the sera ofpatients with Primary Sjogren's Syndrome (PSS) could bind and activate muscarinic acetylcholine receptors of rat neonatal atria. These antibodies were able to inhibit in a irreversible manner the binding of 3H-QNB to muscarinic cholinergic receptors of purified rat atria membranes. Moreover, IgG from PSS individuals could modify biological effects mediated by muscarinic cholinoceptors activation, i.e. decrease contractility and cAMP and increase phosphoinositide turnover and cGMP. Atropine blocked all of these effects and carbachol mimicked them; confirming muscarinic cholinergic receptors-mediated PSS IgG action. Neither binding nor biological effect were obtained using adult instead of neonatal rat atria. IgG from sera of normal women were not effective in the studied system. The prevalence of cholinergic antibody was 100% in PSS and was independent of Ro/SS-A and La/SS-B antibodies. It could be concluded that antibody against muscarinic cholinergic receptors may be another serum factor to be considered in the pathophysiology of the development of congenital heart block.  相似文献   

19.
The negative inotropic effect of acetylcholine (ACh) in atrial muscle can be accounted for by a decrease of a voltage- and time-dependent slow inward current (Isi) carried by Ca2+/Na+ and an increase of outward time-dependent current carried by K+ (IK1) through inwardly rectifying channels. The negative inotropic effect of ACh in ventricular muscle is associated with a reduction of Isi; there is no important effect of ACh on IK1 in ventricular muscle. Because atrial and ventricular muscles display IK1 that is sensitive to Ba2+ and have similar numbers of muscarinic receptor sites, it is concluded that ventricular muscle lacks a metabolic link between the muscarinic receptor and inwardly rectifying K+ channels. Although there is much evidence for cyclic nucleotides as the mediator between muscarinic receptors and Isi channels, cyclic nucleotides do not seem to connect these receptors with inwardly rectifying K+ channels. According to this hypothesis, identification of a metabolic link between muscarinic receptors and IK1 channels should be demonstrable in atrial but not ventricular muscle.  相似文献   

20.
The relationship between the negative inotropic action of carbachol and its ability to elevate cyclic GMP was determined in isolated paced guinea pig atria. A clear dissociation was observed between that concentration of carbachol which depressed contractility and that which elevated tissue cyclic GMP content. Doses as low as 0.03 micronM caused a negative inotropic effect while cyclic GMP was not elevated until concentrations nearly 100-fold higher were used. Thus a correlation between tissue cyclic GMP content and the negative inotropic action of carbachol was not found to exist in guinea pig atria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号