首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal nonhistone high-mobility-group (HMG) proteins were purified from nuclei of maize (Zea mays L. cv. A619) endosperm and leaf tissue. Tissuespecific differences were observed in their polypeptide patterns, in in-vitro phosphorylation experiments with a casein-kinase type II, and by Western blot analysis with antisera against different HMG proteins. Gelfiltration chromatography demonstrated that maize HMG proteins occur as monomers. By measuring the capacity of the HMG proteins to bind to the 5 flanking region of a zein gene, the sensitivity of the proteins to different temperatures, salt concentrations and pH values was determined.Abbreviations EMSA electrophoretic-mobility-shift assay - FPLC fast protein liquid chromatography - HMG high-mobility group - kDa kilodaltons - PVDF polyvinylidenedifluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We would like to thank Mrs. E. Brutzer for excellent technical assistance. We are indebted to Mrs. M. Strecker and Dr. W. Bessler of the Institut für Immunbiologie, Freiburg, FRG, for the preparation of antisera and we gratefully acknowledge helpful discussions with Drs. T. Quayle, R. Grimm and U. Müller of this institute. This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie.  相似文献   

2.
The recent discovery of DNA sequences responsible for the specific attachment of chromosomal DNA to the nuclear skeleton (MARs/SARs) was an important step towards our understanding of the functional and structural organization of eukaryotic chromatin [Mirkovitch et al.: Cell 44:273-282, 1984; Cockerill and Garrard: Cell 44:273-282, 1986]. A most important question, however, remains the nature of the matrix proteins involved in the specific binding of the MARs. It has been shown that topoisomerase II and histone H1 were capable of a specific interaction with SARs by the formation of precipitable complexes [Adachi et al.: EMBO J8:3997-4006, 1989; Izaurralde et al.: J Mol Biol 210:573-585, 1989]. Here, applying a different approach, we were able to "visualize" some of the skeletal proteins recognizing and specifically binding MAR-sequences. It is shown that the major matrix proteins are practically the same in both salt- and LIS-extracted matrices. However, the relative MAR-binding activity of the individual protein components may be different, depending on the method of matrix preparation. The immunological approach applied here allowed us to identify some of the individual MAR-binding matrix proteins. Histone H1 and nuclear actin are shown to be not only important components of the matrix, but to be involved in a highly efficient interaction with MAR-sequences as well. Evidence is presented that proteins recognized by the anti-HMG antibodies also participate in MAR-interactions.  相似文献   

3.
A pool of nuclear proteins from adult worms of Schistosoma mansoni was analyzed for amino acid composition and found to be compatible with high mobility group (HMG) proteins. One of the schistosome HMG proteins was identified as HMG 2 by one-dimensional and two-dimensional PAGE. Stage-specific differences in the HMG-like protein composition were encountered when adult worms were compared to schistosomula, the larval form. Immobilization of the adult male and female nuclear proteins onto nitrocellulose, followed by hybridization against 32P-F-10, a schistosome sex specific gene encoding a major egg shell protein, revealed distinct banding patterns. On the other hand, a synthetic oligonucleotide, derived from the 3' untranslated end of the F-10 gene and possibly containing one regulatory element of the gene, bound mainly to male low MW proteins.  相似文献   

4.
The expression of chromosomal proteins HMG 14 and HMG 17 during proliferation and differentiation into the osteoblast and monocyte phenotypes was studied. Cellular levels of HMG 14 and HMG 1 7 mRNA were assayed in primary cultures of calvarial-derived rat osteoblasts under conditions that (1) support complete expression of the mature osteocytic phenotype and development of a bone tissue-like organization; and (2) where development of osteocytic phenotypic properties are both delayed and reduced in extent of expression. HMG 14 and HMG 17 are preferentially expressed in proliferating osteoblasts and decline to basal levels post-proliferatively at the onset of extracellular matrix mineralization. In contrast, under conditions that are not conducive to extracellular matrix mineralization, HMG 14 is maximally expressed following the downregulation of proliferation. Consistent with previous reports by Bustin and co-workers [Crippa et al., 1990], HMG 14 and HMG 17 are expressed in proliferating HL-60 promyelocytic leukemia cells and downregulated post-proliferatively following phorbol ester-induced monocytic differentiation. However, differentiation into the monocyte phenotype is accompanied by reinitiation of HMG 17 gene expression. The results indicate that the levels of HMG 14 and HMG 17 mRNA are selectively down-regulated during differentiation.  相似文献   

5.
SV40 assembles in the nucleus by addition of capsid proteins to the minichromosome. The VP15VP2/3 capsomer is composed of a pentamer of the major protein VP1 complexed with a monomer of a minor protein, VP2 or VP3. In the capsid, the capsomers are bound together via their flexible carboxy-terminal arms. Our previous studies suggested that the capsomers are recruited to the packaging signal ses via avid interaction with Sp1. During assembly Sp1 is displaced, allowing chromatin compaction. Here we investigated the interactions in vitro of VP1(5)VP2/3 capsomers with the entire SV40 genome, using mutant VP1 deleted in the carboxy-arm that cannot assemble, but retains DNA-binding capacity. EM revealed that VP1(5)VP2/3 complexes bind non-specifically at random locations around the DNA. Sp1 was absent from mature virions. The findings suggest that multiple capsomers attach simultaneously to the viral genome, increasing their local concentration, facilitating rapid, concerted assembly reaction and removal of Sp1.  相似文献   

6.
Chromosomal non-histone high-mobility-group (HMG) proteins represent essential components of eukaryotic chromatin and have also been isolated from a variety of plants. In maize, studies on structure and function of the two larger of the four major HMG proteins have recently been performed and are now extended by analysis of theirin vivo stability using pulse-chase experiments in a cell suspension culture. The half-life of the analyzed HMGa and HMGb proteins was found to be 65 h or more than 78 h, respectively.  相似文献   

7.
I n vitro experiments to study interaction of the mutagenic flavonoid quercetin with DNA are described. Calf thymus DNA treated with quercetin for various time periods was subjected to S1 nuclease hydrolysis. Thermal melting profles of treated DNA were also determined using St nuclease. The rate of DNA hydrolyzed after 1 hr of pre-treatment with quercetin was found to be only about 50% of that in its absence. However, after 10 and 24hrs of treatment with the drug, the rate of S1 nuclease hydrolysis was observed to be greater than that of native DNA. Thermal melting profiles of DNA, treated with quercetin for 10 and 24 hrs, indicated a slight decrease in melting temperatures. Gel filtration of native DNA, which had been digested with S1 nuclease after preincubation with quercetin for 24 hrs, indicated the production of various sized degraded molecules. The results suggest that the initial interaction of quercetin with DNA may have a stabilizing effect on its secondary structure, but prolonged treatment leads to an extensive disruption of the double helix.  相似文献   

8.
The interaction of low mobility group proteins (LMG), isolated from chromatin of pancreatic carcinoma cells (CAPAN-2), with fragments of 5′-flanking region of the antigen 17-1A gene was studied by gel retardation assay. The LMG proteins, which formed complexes with DNA were extracted from the gels and identified by polyacrylamide gel electrophoresis under denaturing conditions. The proteins of Mw about 100, 60, 55 and 48 kDa, which formed specific complexes with fragments of 5′-flanking region of the antigen 17-1A gene, were identified.  相似文献   

9.
A method is given for the preparation of four non-histone chromosomal proteins, one of which, protein 14, hitherto has not been isolated. The method also enables the preparation of histone H1 in gram quantities. The four non-histone chromosomal proteins so prepared are all polar molecules over 50% of each being composed of acidic and basic amino acids. It is also shown that protein 14 can be prepared from calf thymus without prior isolation of chromatin.  相似文献   

10.
Summary In the present study the effect of histones H1o and H5, and the nonhistone chromatin proteins HMG 1, 2, 14 and 17 (the high mobility group proteins), as well as the acidic peptide fragments of HMG 1 and 2 and polyglutamate, on cell division and differentation of cultured murine erythroleukemia (Friend) cells has been investigated. It was found that histones H1o and H5, the acidic peptide fragments of HMG 1 and 2, HMG 14 and 17 and sodium polyglutamate stimulated cell division at a concentration of 10 g/ml. None of the H1o, H5 or HMG protein preparations induced hemoglobin synthesis, as judged by benzidine staining.  相似文献   

11.
12.
Summary Nuclear proteins were extracted from isolated nuclei of immature maize kernels. The promoter region (1.5 kb) of the Shrunken gene, which is highly transcribed in the developing endosperm of the kernel, was scanned for protein-DNA interactions. Several promoter fragments showed protein-DNA complex formation in gel retardation experiments. Two different nucleo-protein complexes (MNP1 and MNP2) have been distinguished in competition and DNase I footprinting experiments. Both nuclear DNA-binding activities are able to recognize multiple sites distributed over a 1.5 kb upstream region of the Shrunken gene. Some of the binding sites established in the in vitro reconstitution experiments are located near to DNase I hypersensitive sites found in the promoter of the Shrunken gene (Frommer and Starlinger 1988).  相似文献   

13.
This study describes the interaction of molybdenum with blood components. Molybdenum-99 was added to blood, and after four washings, 3% of the total radioactivity was found in red cells. More specifically, the radioactivity was determined to be associated with the cell membrane. Molybdenum-99 in the +VI form did not interact with the human erythrocyte membrane; however, Mo(V) forms did interact. Of five different compounds, the highes uptake was observed with a brown Mo(V)-ascorbate complex generated from Mo(VI) and ascorbic acid in the molar ratio 1∶20. A membrane suspension of Mo-ascorbate-treated human erythrocytes was prepared and the solubilized proteins were separated on a polyacrylamide gel in the presence of sodium dodecyl sulfate (SDS). Molybdenum-99 binding to spectrin was demonstrated, as well as some minor interactions with membrane hemoglobin and bands 6 and 8.  相似文献   

14.
The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions between these groups, i.e. the packing density at the interface must be lower than for the sequence-specific Sox-5 HMG box.  相似文献   

15.
Yun Tang  Lennart Nilsson 《Proteins》1998,31(4):417-433
Molecular dynamics simulations have been conducted to study the interaction of human sex-determining region Y (hSRY) protein with DNA. For this purpose, simulations of the hSRY high mobility group (HMG) domain (hSRY-HMG) with and without its DNA target site, a DNA octamer, and the DNA octamer alone have been carried out, employing the NMR solution structure of hSRY-HMG–DNA complex as a starting model. Analyses of the simulation results demonstrated that the interaction between hSRY and DNA was hydrophobic, just a few hydrogen bonds and only one water molecule as hydrogen-bonding bridge were observed at the protein–DNA interface. These two hydrophobic cores in the hSRY-HMG domain were the physical basis of hSRY-HMG–DNA specific interaction. They not only maintained the stability of the complex, but also primarily caused the DNA deformation. The salt bridges formed between the positive-charged residues of hSRY and phosphate groups of DNA made the phosphate electroneutral, which was advantageous for the deformation of DNA and the formation of a stable complex. We predicted the structure of hSRY-HMG domain in the free state and found that both hSRY and DNA changed their conformations to achieve greater complementarity of geometries and properties during the binding process; that is, the protein increased the angle between its long and short arms to accommodate the DNA, and the DNA became bent severely to adapt to the protein, although the conformational change of DNA was more severe than that of the hSRY-HMG domain. The sequence specificity and the role of residue Met9 are also discussed. Proteins 31:417–433, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
The human DNA methyltransferase 3A (DNMT3A) is essential for establishing DNA methylation patterns. Knowing the key factors involved in the regulation of mammalian DNA methylation is critical to furthering understanding of embryonic development and designing therapeutic approaches targeting epigenetic mechanisms. We observe substrate inhibition for the full length DNMT3A but not for its isolated catalytic domain, demonstrating that DNMT3A has a second binding site for DNA. Deletion of recognized domains of DNMT3A reveals that the conserved PWWP domain is necessary for substrate inhibition and forms at least part of the allosteric DNA binding site. The PWWP domain is demonstrated here to bind DNA in a cooperative manner with μM affinity. No clear sequence preference was observed, similar to previous observations with the isolated PWWP domain of Dnmt3b but with one order of magnitude weaker affinity. Potential roles for a low affinity, low specificity second DNA binding site are discussed.  相似文献   

17.
The 3-kb external spacer from a maize (Zea mays L. cv. A619) nuclear rRNA gene unit which contains nine highly homologous 200-bp repeat elements was found to include a region with DNA-curvature properties. The centre of curvature was localized within repeats 5 and 6 using a circular permutation assay. A 60-bp-long subfragment of this region was found to interact with nuclear proteins, including high-mobility-group (HMG) proteins, and with the maize HMGa protein synthesized in Escherichia coli from a recombinant plasmid. The potential influence of the binding of the HMG proteins on the conformation of this subfragment was studied with a permutation assay based on a bending vector.  相似文献   

18.
In Escherichia coli, the IclR protein regulates both the aceBAK operon and its own synthesis. Database homology searches have identified many IclR-like proteins, now known as the IclR family, which can be identified by a conserved C-terminal region. We have cloned and purified one of these proteins, which we have named GclR (glyoxylate carboligase repressor). Although purification is straightforward, both the IclR and GclR proteins are difficult to manipulate, requiring high salt (up to 0.6 M KCl) for solubility. With the advent of nanospray ionization, we could transfer the proteins into much higher concentrations of volatile buffer than had been practical with ordinary electrospray. In 0.5 M ammonium bicarbonate buffer, both proteins were stable as tetramers, with a small amount of dimer. In a separate experiment, we found that IclR protein selected from a random pool a sequence which matched exactly that of the presumed binding region of the GclR protein, although IclR does not regulate the gcl gene. We designed a 29 bp synthetic DNA to which IclR and GclR bind, and with which we were able to form noncovalent DNA-protein complexes for further mass spectrometry analysis. These complexes were far more stable than the proteins alone, and we have evidence of a stoichiometry which has not been described previously with (protein monomer : dsDNA) = (4 : 1).  相似文献   

19.
Different DNA polymerases partition differently between replication and repair pathways. In this study we examine if two Pol I family polymerases from evolutionarily distant organisms also differ in their preferences for replication versus repair substrates. The DNA binding preferences of Klenow and Klentaq DNA polymerases, from Escherichia coli and Thermus aquaticus respectively, have been studied using a fluorescence competition binding assay. Klenow polymerase binds primed-template DNA (the replication substrate) with up to 50× higher affinity than it binds to nicked DNA, DNA with a 2 base single-stranded gap, blunt-ended DNA, or to a DNA end with a 3′ overhang. In contrast, Klentaq binds all of these DNAs almost identically, indicating that Klenow has a stronger ability to discriminate between replication and repair substrates than Klentaq. In contrast, both polymerases bind mismatched primed-template and blunt-ended DNA tighter than they bind matched primed-template DNA, suggesting that these two proteins may share a similar mechanism to identify mismatched DNA, despite the fact that Klentaq has no proofreading ability. In addition, the presence or absence of 5′- or 3′-phosphates has slightly different effects on DNA binding by the two polymerases, but again reinforce Klenow's more effective substrate discrimination capability.  相似文献   

20.
The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号