首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic starch (D.S. 0.065) and anionic starch (D.S. 0.037) were used to form biopolyelectrolyte multilayers. The influence of the solution concentration of NaCl on the adsorption of starch onto silicon oxide substrates and on the formation of multilayers was investigated using stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). The wet adhesive properties of the starch multilayers were examined by measuring pull-off forces with the AFM colloidal probe technique. It was shown that polyelectrolyte multilayers (PEM) can be successfully constructed from cationic starch and anionic starch at electrolyte concentrations of 1 mM NaCl and 10 mM NaCl. The water content of the PEMs was approximately 80% at both electrolyte concentrations. However, the thickness of the PEMs formed at 10 mM NaCl was approximately twice the thickness formed at 1 mM NaCl. The viscoelastic properties of the starch PEMs, modeled as Voigt elements, were dependent on the polyelectrolyte that was adsorbed in the outermost layer. The PEMs appeared to be more rigid when capped by anionic starch than when capped by cationic starch. The wet adhesive pull-off forces increased with layer number and were also dependent on the polyelectrolyte adsorbed in the outermost layer. Thus, starch PEM treatment has a large potential for increasing the adhesive interaction between solid substrates to levels higher than can be reached by a single layer of cationic starch.  相似文献   

2.
Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating located beneath the functional coating (aminosilane or epoxysilane). It is designed to enhance the fluorescence in the Cy3 and Cy5 channel by increasing the light absorption of the dyes by about 6-fold and by redirecting emitted fluorescence into the detector during scanning, resulting in a theoretical limit of about 12-fold signal amplification. Two-color DNA microarray experiments conducted on the OI slides showed over 8-fold signal amplification, conservation of gene expression ratios, and increased signal-to-noise ratio when compared to control slides, indicating enhanced detection sensitivity. Protein microarray assays also exhibited over 8-fold signal amplification at three different target concentrations, demonstrating the versatility of the OI slides for different microarray applications. Further, the DNA and protein assays performed on the OI slides exhibited excellent detection sensitivity even at the low target amounts essential for diagnostic applications. The OI slides are compatible with commonly used protocols, printers, scanners and other microarray equipment. Therefore, the OI slides offer an attractive alternative to traditional microarray substrates, where enhanced detection sensitivity is desired.  相似文献   

3.
Mixing oppositely charged polyelectrolytes in aqueous solutions leads to the spontaneous formation of polyelectrolyte complexes. Here, we characterize the interaction between xanthan of two different chain lengths, a tri-glucosamine and a chitosan polymer by isothermal titration calorimetry (ITC). Analysis of the experimental thermodynamic data assuming a single set of identical sites indicated both enthalpic and entropic contributions to the overall interaction in the interaction between xanthan and tri-glucosamine. The relative contribution of entropy compared to enthalpy was found to be largest for the shortest chain length of xanthan. Using a chitosan polymer instead of tri-glucosamine gave rise to two different stages in the interaction process. A model where the first stage of the ITC curve represent an initial polyelectrolyte complexation stage followed by aggregation on further titration of chitosan to the xanthan is suggested. Ultrastructure images by applying atomic force microscopy at some selected extents of titration are consistent with the two-stage interpretation of the thermodynamic data.  相似文献   

4.
In this study the relative importance of valence and charge density of the polycation chitosan on the compaction process of DNA and xanthan is investigated. Chitosans with approximately equal valence but differing in their charge density were employed to form polyelectrolyte complexes with the two polyanions. The resulting structures (toroids, rods, and globules) have been visualized by AFM. For DNA-chitosan the complexation process was additionally studied by utilizing the fluorescent probe ethidium bromide. The results show that not only the total charge per chitosan molecule (valence), but also the charge density is important in determining the association with polyanions such as DNA and xanthan. Furthermore, it is demonstrated that the pH at which the complexation takes place is an important parameter in the complexation process, influencing the structures formed.  相似文献   

5.
Yu DG  Lin WC  Yang MC 《Bioconjugate chemistry》2007,18(5):1521-1529
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.  相似文献   

6.
7.
Critical concentrations for the isotropic to cholesteric phase transitions of double-stranded DNA fragments in simple buffered saline (0.1 M NaCl) solutions were determined as a function of DNA contour length ranging from approximately 50 nm to 2700 nm, by solid-state 31P NMR spectroscopy and polarized light microscopy. As expected for semirigid chains, the critical concentrations decrease sharply with increasing DNA length near the persistence length in the range from 50 to 110 nm, and approach a plateau when the contour length exceeds 190 nm. The biphasic region is substantially wider than observed for xanthan, another semirigid polyelectrolyte approximately twice as stiff as DNA, primarily because of low critical concentrations for first appearance of the anisotropic phase, C(i)*, in DNA samples > or =110 nm (320 base pairs) long. The limiting C(i)* for DNA > or =490 nm long is exceptionally low (only 13 mg/ml) and is substantially lower than the C(i)* of approximately 40 mg/ml reported for the stiffer xanthan polyelectrolyte. The much higher values of the critical concentrations, C(a)*, for the disappearance of the isotropic DNA phase (> or =67 mg/ml) are modestly higher than those observed for xanthan and are predicted reasonably well by a theory that has been applied to other semirigid polymers, if a DNA persistence length in the consensus range of 50-100 nm is assumed. By contrast, the broad biphasic region and low C(i)* values of DNA fragments > or =190 nm long could only be reconciled with theory by assuming persistence lengths of 200-400 nm. The latter discrepancies are presumed to reflect some combination of deficiencies in current theory as applied to chiral, strong polyelectrolytes such as DNA, and sequence-dependent variations in DNA properties such as flexibility, curvature, or interaction potential. The propensity of DNA to spontaneously self-order at low concentrations well in the physiological range may have biological significance.  相似文献   

8.
A membrane-covered polarographic oxygen electrode was used to measure oxygen diffusion coefficients in aqueous polyelectrolyte solutions of xanthan gum, sodium alginate, and sodium carboxymethylcellulose (CMC). In sodium alginate solutions, dilute xanthan solutions, and solutions containing more than 0.3 wt % CMC, oxygen diffusion coefficients decrease with increasing polymer concentrations. Interestingly, in dilute CMC solutions and concentrate xanthan solutions containing more than 0.5 wt % xanthan gum, oxygen diffusion coefficients increase with increasing polymer concentrations, and values exceeding that in pure water are generally observed.  相似文献   

9.
Li B  Haynie DT 《Biomacromolecules》2004,5(5):1667-1670
Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.  相似文献   

10.
The rates of uptake of 125I-labelled poly(vinylpyrrolidone), [14C]sucrose and colloidal [198Au]gold by 17.5-day rat yolk sac cultured in vitro were studied. Over a 6.5h period each substrate was accumulated at a constant and reproducible rate of approx. 2microliter/h per mg of protein. After accumulation in vitro, the three substances were released from the tissue into substrate-free medium at low rates. Sucrose present in the medium at concentrations up to 10 mg/ml was without effect on the accumulation of either [14C]sucrose or 125I-labelled poly(vinylpyrrolidone), but at higher concentrations inhibited the uptake of both substrates. Some batches of colloidal [198Au]gold had a significantly higher Endocytic Index (up to 5 microliter/h per mg of protein). The Endocytic Index of such a batch decreased with increasing substrate concentration, but colloidal gold did not decrease the Endocytic Index of 125I-labelled poly(vinylpyrrolidone). It is concluded that the three substrates enter the yolk sac by pinocytosis in the liquid phase. Those batches of colloidal [198Au]gold with higher Endocytic Indices are considered to enter also by adsorption on membrane binding-sites.  相似文献   

11.
We demonstrate a method to create high density protein microarrays with excellent spot uniformity using photolithography and plasma processing on low cost commercially available microscope glass slides. Protein deposition and fluorescence signal evaluation on these substrates are performed by standard arrayers and scanners. To this end, spots of commercial photoresists (AZ5214, SU8 and Ormocomp(?)) were defined through lithography on glass substrates followed by short SF(6) plasma treatment and selective protein adsorption on these spots with respect to glass (spot to background fluorescence signal ratios 30:1 to 40:1) was demonstrated using model protein binding assays. Among the photoresists tested, Ormocomp was selected since it provided the highest protein binding capacity. No ageing of Ormocomp/glass substrates in terms of protein binding capacity was observed for at least two months. Besides to protein microarrays, DNA microarrays were also developed by spotting streptavidin-biotinylated oligonucleotide conjugates corresponding to wild- and mutant-type sequences of four deleterious BRCA1 gene mutations. For all of the examined mutations, higher specific hybridization signals (1.5-4 times) and improved discrimination ratios between wild- and mutant-type sequences as well as higher spot uniformity and repeatability were demonstrated on Ormocomp/glass substrates with intra- and inter-spot CVs of 8.0% and 4.5%, respectively, compared to commercial polystyrene (intra- and inter-spot CVs 36% and 18%) and epoxy-coated glass (intra- and inter-spot CVs 26% and 20%) slides. Thus, the proposed substrates can be readily applied to protein and DNA microarrays fabrication and, moreover, the described method for selective protein adsorption can be advantageously implemented in various analytical microdevices for multi-analyte detection.  相似文献   

12.
In this work a gel was formed by complexation of two natural polyelectrolytes, chitosan and xanthan. Changes in the hydrogels rheological properties have been studied in terms of hydrogel concentration (7–10% w/w), chemical media used for the hydrogel dispersion, and ‘test lag time’; i.e., the time between hydrogel dispersion in the chemical media and the start of the rheological test (up to 390 min). The viscoelastic properties of this polysaccharide system were characterized by oscillatory shear measurements under small-deformation conditions and the results show that chitosan/xanthan hydrogels behave like weak gels. The shear modulus increased almost linearly with frequency in the range studied (0.1–65 s−1). The effects of hydrogel concentration and dispersion medium have been related to electrostatic equilibrium and by the presence of counter-ions modifying the internal structure of the hydrogel.  相似文献   

13.
Techniques that provide strong signal amplification are useful in diagnostic applications, especially in detecting low concentrations of non-amplifiable target molecules. A versatile and strong signal amplification method based on activities of a DNA polymerase to generate high concentrations of pyrophosphate (PPi) is described. The generation of PPi is catalyzed by nucleotide extension and excision activities of a DNA polymerase on an oligonucleotide cassette. The signal is generated upon enzymatic conversion of PPi to ATP and ATP levels subsequently detected with firefly luciferase. Bioluminesence produced by an oligonucleotide cassette consisting of just two polymerase reaction sites is sufficient to detect them at low attomole levels. The attachment of a large number of these oligonucleotide cassettes to DNA dendrimers enabled the detection of such polyvalent substrate molecules at low zeptomole (10–21 mol) concentrations. The extent of signal amplification obtained with dendrimer substrates is comparable to exponential target amplifications provided by nucleic acid amplification methods. The attachment of such PPi-generating dendritic DNA platforms to ligands that mediate target recognition would potentially permit detection of extremely low concentrations of analytes in diagnostic assays.  相似文献   

14.
蛋白质微阵列生产用琼脂糖修饰玻片制备的条件优化   总被引:5,自引:1,他引:4  
目的:建立一种以琼脂糖修饰的玻片为载体的蛋白质微阵列制备的优化方法,比较琼脂糖修饰玻片和醛基修饰玻片及氨基修饰玻片对蛋白质固定效率的优劣。方法:将羊IgG固定在载体表面,经过洗涤、封闭,再加入Cy3标记的兔抗羊IgG,孵育,洗涤后用共聚焦激光扫描仪获取图像,检测各点的荧光强度,根据荧光强度确定最佳琼脂糖浓度,最佳NaIO4浓度,最佳固定时间以及封闭时间等实验条件。结果:琼脂糖浓度为1.2%、NaIO4浓度为20mmol/L、固定时间为1h、孵育时间为45min时,蛋白质在载体上的固定效率和反应活性最高。在固定的抗体浓度相同的情况下,琼脂糖修饰玻片荧光强度是醛基修饰玻片的2.6倍,是氨基修饰玻片的9倍。结论:确立了蛋白质微阵列生产用琼脂糖修饰玻片制备的优化条件,用该优化条件制备的琼脂糖玻片更适合用于蛋白质微阵列载体。  相似文献   

15.
In the present paper the formation of complexes between positively charge polyelectrolyte (polyethyleneimine and chitosan) and Candida rugosa lipase from a crude extract and porcine lipase from pancreas commercial homogenate preparations were analyzed. The solubility of lipases-cationic polyelectrolytes formation was dependent on: polyelectrolyte densities electrical charge, polyelectrolyte and enzyme concentrations and salts present in the solution. The lipase was recovered from the non-soluble complex by adding of NaCl at a given pH. Although the polyelectrolytes did not affect lipase biological activity, both of them produced good enzyme recovery (>90%); however, purification factors were low. This methodology appears to be a good previous prepurification and concentration method, using, low-cost polymers, allows the design of a purification method where the protein of interest is present in a large volume with respect to the small amount of polyelectrolyte added.  相似文献   

16.
The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays.  相似文献   

17.
Chitosan (Ch) is a nontoxic and biocompatible polysaccharide extensively used in biomedical applications. Ch, as a polycation, can be combined with anionic polymers by layer-by-layer (LbL) self-assembly, giving rise to multilayered complexed architectures. These structures can be used in tissue engineering strategies, as drug delivery systems, or artificial matrices mimicking the extracellular microenvironment. In this work, Ch was combined with poly(γ-glutamic acid) (γ-PGA). γ-PGA is a polyanion, which was microbially produced, and is known for its low immunogenic reaction and low cytotoxicity. Multilayered ultrathin films were assembled by LbL, with a maximum of six layers. The interaction between both polymers was analyzed by: ellipsometry, quartz crystal microbalance with dissipation, Fourier transform infrared spectroscopy, atomic force microscopy, and zeta potential measurements. Ch/γ-PGA polyelectrolyte multilayers (PEMs) revealed no cytotoxicity according to ISO 10993-5. Overall, this study demonstrates that Ch can interact electrostatically with γ-PGA forming multilayered films. Furthermore, this study provides a comprehensive characterization of Ch/γ-PGA PEM structures, elucidating the contribution of each layer for the nanostructured films. These model surfaces can be useful substrates to study cell-biomaterial interactions in tissue regeneration.  相似文献   

18.
Fluorogenic and chromogenic substrates were used in direct and trapping enzyme-linked immunosorbent assays (ELISA) for the detection of mouse IgG and foot-and-mouth disease virus (FMDV). The detection limits for both antigens were compared using different combinations of enzymes and substrates. Various times and concentrations of chemicals were used to obtain maximum sensitivity for both systems. Similar sensitivities were found using fluorogenic and chromogenic substrates. Tetramethyl benzidine substrate for horse-radish peroxidase enzyme conjugates was found to attain the highest sensitivity levels for chromogenic assays (0.12 ng IgG/ml and 1.0 ng/ml FMDV respectively), after 10 min incubation. Of the two fluorogenic enzyme/substrates studied, B-galactosidase was the most sensitive but required extended incubation times (2-3 h) as compared with chromogenic systems. Special microplates for fluoro-immunoassay (FIA) were compared with conventional microplates and no advantage was found to justify their use. An alkaline phosphatase anti-guinea-pig conjugate was used to confirm the equivalence of fluorogenic and chromogenic substrates in terms of sensitivity. A comparison of the amount of signal generated using various concentrations of enzyme in the absence of antigen was made for two different alkaline phosphatase conjugates to obtain theoretical sensitivity limits. One possible advantage of fluorogenic substrates is that high binding ratio can improve the confidence in discrimination of positive results.  相似文献   

19.
The use of polyelectrolyte surface-modified Cowpea mosaic virus (CPMV) for the templated synthesis of narrowly dispersed gold nanoparticles is described. The cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), is electrostatically bound to the external surface of the virus capsid; the polyelectrolyte promotes the adsorption of anionic gold complexes, which are then easily reduced, under mild conditions, to form a metallic gold coating. As expected, the templated gold nanoparticles can be further modified with thiol reagents. In contrast, reaction of polyelectrolyte-modified CPMV (CPMV-PA) with preformed gold nanoparticles results in the self-assembly of large, hexagonally packed, tessellated-spheres.  相似文献   

20.
Biogenic production of cyanide and its application to gold recovery   总被引:1,自引:0,他引:1  
Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4–7 days. Approximately 50% of the cyanide-recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth — viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l−1) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media. Journal of Industrial Microbiology & Biotechnology (2001) 26, 134–139. Received 06 June 2000/ Accepted in revised form 30 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号