首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato viral disease has been a major problem in potato production worldwide including Russia. Here, we detected Potato Virus M (PVM), P (PVP), S (PVS), Y (PVY), and X (PVX) and Potato Leaf Roll Virus (PLRV) by RT-PCR on potato leaves and tubers from the Northwestern (NW), Volga (VF), and Far Eastern (FE) federal districts of Russia. Each sample was co-infected with up to five viruses. RT-PCR disclosed all six viruses in NW, three in VF, and five in FE. Phylogenetic analyses of PVM and PVS strains resolved all PVM isolates in Group O (ordinary) and all PVS isolates in Group O. Seven PVY strains were detected, and they included only recombinants. PVY recombinants were thus the dominant potato virus strains in Russia, although they widely varied among the regions. Our research provides insights into the geographical distribution and genetic variability of potato viruses in Russia.  相似文献   

2.
Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVY(O), PVY(N) and PVY(C)) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and covariation analyses to identify evolutionarily relevant amino acid residues. Our results show that both geographic and host-driven adaptations explain PVY diversification. Furthermore, purifying selection is the main force driving PVY evolution, although some indications of positive selection accounted for the diversification of the different strains. Interestingly, the analysis of P3N-PIPO, a recently described gene in potyviruses, seems to show a variable length among the isolates analyzed, and this variability is explained, in part, by host-driven adaptation.  相似文献   

3.
4.
In this study we applied RNA silencing to engineer potato plants that are resistant to potato virus Y (PVY). We expressed double-stranded (ds) RNA derived from the 3 terminal part of the coat protein gene of PVY, which is highly conserved in sequence amongst different PVY isolates, in transgenic potatoes of the commercial variety Spunta. Transgenic plants were analyzed for generation of transgene-derived short interfering RNAs (siRNAs) prior to virus inoculation. Twelve of fifteen transgenic lines produced siRNAs and were highly resistant to three strains of PVY, each belonging to three different subtypes of the virus (PVYN, PVYO and PVYNTN). Infection of transgenic plants with Potato virus X (PVX) simultaneously or prior to the challenge with PVY did not interfere with PVY-resistance.Anastasia Missiou: M.A. and K.K. have contributed equally to this workKriton Kalantidis: M.A. and K.K. have contributed equally to this work  相似文献   

5.
【目的】本研究通过对不同PVY分离物基因的测序及分析,从而了解PVY株系的多样性,进而对PVY病毒的分子检测及防治提供重要的资料和参考。【方法】本研究针对黑龙江15个马铃薯Y病毒样品的P1基因进行克隆测序和进化树分析。【结果】经比对分析,样品被分成两组,有10个样品的基因类型高度同源,且相对保守,是本地区的优势群组,无论是与国内其它地区样品比较还是与国外样品比较,其亲缘关系都有一定距离;而另一组中的5个样品的P1基因与本地优势组群有较大差异,且这5个样品间也有一定的差异,并与国内其它地区和国外一些样品的P1基因序列比较接近。通过比对Gen Bank中已上传的序列提供的PVY株系的信息,得知本次试验的P1基因与PVY^(NTN-NW)株系是相似的,且这15个样品与国内其他样品一样都是由PVY^N株系演变而来。【结论】由P1基因分析表明,PVY受环境影响较大,黑龙江10个样品的PVY在长期的进化中产生了具有地方特点的变化,而后来的5个样品说明中国大部分PVY有可能是跟随国外品种资源的引进进入,同时PVY也随国内不同区域间资源交流和种薯调运而传播。  相似文献   

6.
Plant–virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant–virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.  相似文献   

7.
Ry confers extreme resistance to all strains of potato virus Y (PVY). To identify the elicitor of the Ry-mediated resistance against PVY in potato, we expressed each of the PVY-encoded proteins in leaves of PVY-resistant (Ry) and -susceptible (ry) plants. For most of the proteins tested, there was no evident response. However, when the NIa proteinase was expressed in leaves of Ry plants, there was a hypersensitive response (HR). Proteinase active site mutants failed to induce the Ry-mediated response. The HR was also induced by the NIa proteinase from pepper mottle virus (PepMoV), which has the same cleavage specificity as the PVY enzyme, but not by the tobacco etch virus (TEV) or the potato virus A (PVA) proteinases that cleave different peptide motifs. Based on these results, we propose that Ry-mediated resistance requires the intact active site of the NIa proteinase. Although the structure of the active proteinase could have elicitor activity, it is possible that this proteinase releases an elicitor by cleavage of a host-encoded protein. Alternatively, the proteinase could inactivate a negative regulator of the Ry-mediated resistance response.  相似文献   

8.
During two growing seasons in years of 2003 and 2004 potato and tobacco of virus infected plants were collected from fields in Tehran (Damavand) and Mazandaran (Behshahr) provinces. Serological methods of TAS-ELISA and DIBA were performed by using PVY antiserum (DSMZ - Plant Virus Collection; Germany) but only PVY was detected. The strain of samples was determined by using MAb of potato virus Y (AS-0403/1; DSMZ; Germany). The molecular weight of the virus coat protein was approximately 34 kDa in SDS-PAGE and Western blotting. Total RNA was extracted for RT-PCR. Immunocapture RT-PCR and RT-PCR products were 974 bp by using specific primers of PVY. IC-RT-PCR has given the best results.  相似文献   

9.
Crop borders reduce potato virus Y incidence in seed potato   总被引:1,自引:0,他引:1  
Crop borders of soybean (Glycine max), sorghum (Sorghum bicolor), winter wheat (Triticum aestivum) and potato (Solanum tuberosum) were tested as a means of reducing potato virus Y (PVY) incidence in seed potato. Borders of fallow cultivated ground served as controls. Aphid landing rates were monitored weekly in plots using green tile traps, and PVY incidence was assessed by serologically testing tuber progeny from selected rows in each plot. Average weekly aphid landing rates in fallow-bordered and crop-bordered plots were not significantly different in 1992 (29.4 and 25.2 aphids, respectively) or 1993 (7.3 and 6.6 aphids, respectively). However, crop borders significantly reduced PVY incidence. In 1992, fallow-bordered and soybean-bordered plots averaged 47.8% and 35.0% PVY infection, respectively. In 1993, PVY infection averaged across all crop (soybean, sorghum, and wheat) bordered plots was 2.7% compared to 6.8% in fallow-bordered plots. PVY incidence in the centre rows of fallow-bordered and crop-bordered plots was statistically equivalent, while outer rows of crop-bordered plots had significantly less PVY than outer rows of fallow-bordered plots. Crop borders apparently reduced the number of viruliferous aphids landing on the edge of the plot. The choice of crop species used as a border, or treating the border with a systemic insecticide, did not affect aphid landing rates or PVY incidence. In 1995, PVY incidence in the centre 10 row block of potatoes averaged 2.1% across all crop borders (potato and soybean). PVY infection in the four row potato border averaged 5.7%. Crop borders are readily adaptable to current production practices, although the greatest benefits in reducing PVY incidence would occur in average sized, generation 0 (< 0.2 ha), elite seed potato fields.  相似文献   

10.
Coat protein-mediated resistance (CPMR), resistance conferred as a result of the expression of viral coat proteins in transgenic plants, has been illustrated to be an effective way of protecting plants against several plant viruses. Nonetheless, consistent protection has not been achieved for transgenic plants expressing the coat protein of potato virus Y (PVY), the type member of the potyvirus family. In this report, three different potato cultivars were transformed with a chimeric construct consisting of the capsid protein (CP) coding sequences of PVY flanked by the AUG codon and the translational enhancer from the coat protein gene of potato virus X (PVX). These cultivars were shown to express high levels of PVY CP and confer a high degree of protection against PVYo and PVYN under both greenhouse and field conditions. In addition, transgenic plants infected with potato virus A (PVA), a related potyvirus, exhibited a delay in virus accumulation, which could be easily overcome with increasing virus concentrations. Received: 26 October 1995 / Accepted: 14 June 1996  相似文献   

11.
Natural mutations in translation initiation factor eIF4E confer resistance to potyviruses in many plant species. Potato is a staple food crop plagued by several potyviruses, yet to date no known eIF4E-mediated resistance genes have been identified. In this study, we demonstrate that transgenic expression of the pvr1(2) gene from pepper confers resistance to Potato virus Y (PVY) in potato. We then use this information to convert the susceptible potato ortholog of this allele into a de novo allele for resistance to PVY using site-directed mutagenesis. Potato plants overexpressing the mutated potato allele are resistant to virus infection. Resistant lines expressed high levels of eIF4E mRNA and protein. The resistant plants showed growth similar to untransformed controls and produced phenotypically similar tubers. This technique disrupts a key step in the viral infection process and may potentially be used to engineer virus resistance in a number of economically important plant-viral pathosystems. Furthermore, the general public may be more amenable to the 'intragenic' nature of this approach because the transferred coding region is modified from a gene in the target crop rather than from a distant species.  相似文献   

12.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

13.
Plants of several potato clones with major gene resistance to potato virus Y (PVY) developed necrotic local lesions and systemic necrosis after manual inoculation with common (PVYo) or veinal necrosis (PVYN) strains of the virus. The clones reacted similarly, although their resistance genes are thought to be derived from four different wild species of Solarium. Mesophyll protoplasts from each clone became infected when inoculated with RNA of PVYo by the polyethylene glycol method. The proportion of protoplasts infected, assessed by staining with fluorescent antibody to virus particles, was similar to that of protoplasts of susceptible potato cultivars. In contrast, plants of potato cultivars Corine and Pirola, which possess gene Ry from S. stoloniferum, developed few or no symptoms when manually inoculated or grafted with PVYo. Moreover, only very few protoplasts of these cultivars produced virus particle antigen after inoculation with PVYo RNA. The extreme resistance to PVY of cvs Corine and Pirola was therefore expressed by inoculated protoplasts whereas the resistance of the necrotic-reacting potato clones was not.  相似文献   

14.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these two viruses was identified in the backcross progeny of a Solanum etuberosum Lindl. somatic hybrid. Multiple years of field evaluations with high-virus inoculum and aphid populations have shown the PVY and PLRV resistances of S. etuberosum to be stably expressed in two generations of progeny. However, while PLRV resistance was transmitted and expressed in the third generation of backcrossing to cultivated potato (Solanum tuberosum L. subsp. tuberosum), PVY resistance was lost. PLRV resistance appears to be monogenic based on the inheritance of resistance in a BC3 population. Data from a previous evaluation of the BC2 progeny used in this study provides evidence that PLRV resistance was partly conferred by reduced PLRV accumulation in foliage. The field and grafting data presented in this study suggests that resistance to the systemic spread of PLRV from infected foliage to tubers also contributes to the observed resistance from S. etuberosum. The PLRV resistance contributed by S. etuberosum is stably transmitted and expressed through sexual generations and therefore would be useful to potato breeders for the development of PLRV resistant potato cultivars.  相似文献   

15.
57 native potato tuber samples collected from different potato growing region of Iran, planted on single rows in Karaj College experimental station. Plant samples of each single row plus 9.25 Fresh foliage samples collected from fields under new introduced cultivars were tested for potato virus (PVM) infection during growing season. Also 78 weeds and field crops belonging to Solonacae and Leguminosae from or neighboring to potato field were tested. Results indicated that PVM was not found on any plant other than potatoes. PVM was detected on 16 samples of 57 old vars, Virus was not seen in any samples collected from fields under new varieties. Results show that PVM is limiting in this crop. PVM detecting is difficult using assay hosts. Best test plants were French bean var Red kidney, Showing pinpoint necrotic LL, also Datura metel and Nicotiana debneyi are useful for virus detection showing chlorotic local lesion. Also microprecipition and gel diffusion test can be used for virus detection but Elisa was the best method. PVM infected plant showed 11-19.5 percent yield decrease in 3 cultivars tested.  相似文献   

16.
Mixed viral infections of heterologous viruses such as Potato virus Y (family Potyviridae, genus Potyvirus, PVY) and Potato leafroll virus (family Luteoviridae, genus Polerovirus, PLRV) are a regular occurrence in Idaho's potato, Solanum tuberosum (L.), cropping systems. An increased number of plant samples from Idaho's potato fields over the past 2 yr has serologically tested positive for both PVY and PLRV via double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and exhibited more severe symptoms than singly-infected plants (PVY or PLRV). Several studies have extensively examined the mixed infection phenomenon but to the best of our knowledge, none have examined the effect of such infections on vector biology and preference. Laboratory studies were conducted to examine the effect of mixed viral (PVY-PLRV) infection on the fecundity and preference of two of the most efficient PVY and PLRV vectors, the green peach aphid, Myzus persicae (Sulzer), and the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae). M. persicae and M. euphorbiae adults were clip-caged (one adult per cage) to leaflets of PVY, PLRV, PVY-PLRV-infected, and noninfected potato plants. The number of nymphs produced in all four treatments was recorded after 96 h. M. persicae and M. euphorbiae fecundity was significantly higher on mixed infected plants than on singly infected plants or noninfected plants. Preference of alatae and apterae of M. persicae and M. euphorbiae was determined with the use of settling bioassays. Both alatae and apterae of M. persicae and M. euphorbiae preferentially settled on PVY-PLRV-infected plants than on singly infected plants (PVY or PLRV) or noninfected plants.  相似文献   

17.
The degree of serological variability among pepper strains of potato virus Y (PVY) was assessed through the analysis of samples of infected pepper collected in three main pepper producing regions of Spain. Samples corresponding to the period 1980–1991 were analysed by ELISA with five different monoclonal antibodies (MAbs) produced against potato strains of the virus. The results obtained show a limited degree of epitope variability among pepper PVY-isolates, since only eight out of 32 possible serological profiles were found. Most isolates are not recognised by a MAb directed towards an epitope reported to be present in all potato-PVY isolates. The overall serological behaviour of pepper isolates with these MAbs places them as closer to the group O, of the three groups into which the potato isolates of PVY have been subdivided.  相似文献   

18.
Mineral oil sprayed onto potato virus Y (PVY) infected tobacco plants reduced acquisition of this potyvirus by Myzus persicae (Sulz.). Although the pre-penetration activities of aphids were longer on oil treated leaves, the inhibitory effect of the oil could not be attributed to differences in the duration of stylet penetration. Aphids were therefore made part of a DC circuit in order to investigate their stylet activities during penetration of PVY infected source plants and healthy test plants. Both acquisition and inoculation of the virus were reduced by the presence of oil on the plant surface, but these reductions could not be related to electrically recorded differences in plant penetration behaviour. In particular, stylet punctures of plant cell membranes were not reduced by mineral oil. Non-behavioural reasons are suggested to explain the mode of action of the oil.  相似文献   

19.
20.
Potato virus Y (PVY) infection may cause a severe yield depression up to 80%. To develop the potato (Solanum tuberosum L. ) cultivars that resist PVY infection is very crucial in potato production. The authors have been cloned the coat protein gene of PVY from its Chinese isolate. A chimaeric gene containing the cauliflower mosaic virus 35S promoter and PVY coat protein coding region was introduced into the potato cultivars “Favorita”, “Tiger head” and “K4” via Agrobacterium tumefaciens. Results from PCR and Southern blot analysis confirmed that the foreign gene has integrated into the potato chromosomes. These transgenic potato plants were mechanically inoculated with PVY virus (20 mg/L). The presence of the virus in the potato plants was determined by ELISA and method of back inoculation into tobacco. The authors observed a drastic reduction in the accumulation of virus in some transgenic potato lines. Furthermore, some transgenic potato lines produced more tubers per plant than the untransformed potato did, and the average weight of these transgenic plant tubers was also increased. In the field test, the morphology and development of these transgenic potato plants were normal, 3 transgenic lines of “Favorita” exhibited a higher yield than the untrasformed virus-free potato with an increase ranged from 20% to 30%. From these transgenic lines, it will be very hopeful to develop a potato cultivar which not only has a significant resistance to PVY infection, but also a good harvest in potato production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号