首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
利用对比观察法,研究黑蜗牛的形态结构、生殖特点、死亡原因,发现黑蜗牛的螺旋贝壳短,只有壳顶和两个螺层,体螺层不能完全容纳软体,螺旋贝壳中碳酸钙含量约为60.3%,易软化。体背上生长着外套膜和外壳膜,外套膜在螺旋贝壳内包裹着内脏囊,外壳膜覆盖在螺旋贝壳的表面,能向不同方向伸展。壳口处的外壳膜上有排泄孔,排泄孔与外套膜上的呼吸孔连通,具有呼吸、排泄粪便和排泄尿液的多种功能。证明黑蜗牛是一种新的软体动物——最原始的蜗牛,也是陆生软体动物贝壳退化成内壳的过渡物种。隶属于琥珀蜗牛科(Zonitidae),夏威夷琥珀蜗牛属(Hawaiia),沂水琥珀蜗牛种(Hawaiia yishuiusculeLi)。  相似文献   

2.
萤火虫(鞘翅目:萤科)两性交流中的闪光信号   总被引:4,自引:0,他引:4  
对国内外萤火虫两性交流闪光信号的研究进行了综述,萤火虫发光器因种而异,多数发出黄绿色萤光,闪光信号的频率、光谱、强度及其时空分布的闪光模式包含着两性交流信息。萤火虫闪光交流系统有两种分类方法,其一是萤火虫具两个类型的闪光信号交流系统,及系统和系统,前者多在旧大陆,后者多在新大陆;其二是萤火虫具6个类型闪光信号交流系统,即HP,LL,LC,PR,CR和LB型,其中PR型与系统相对应,HP型与系统对应。萤火虫两性交流闪光信号常因时间和空间上的差异及外界物体的干扰使两性闪光交流的效率受到影响。萤火虫两性交流的闪光信号起源于鞘翅目的幼虫阶段,并起警戒天敌的作用,经过两性选择成为成虫两性交流的一种途径,进而成为新大陆的一些萤火虫间捕食猎物和逃避天敌的生存策略。  相似文献   

3.
The luminescent land snail Dyakia striata displayed a bioluminescence spectrum with a maximum wavelength of 515 nm. A green fluorescent substance extracted from the photogenic organ of an adult snail had a similar wavelength maximum but its fluorescence spectrum differed from that of flavin chromophore substances involved in light emission in some other luminescent organisms.  相似文献   

4.
Bioluminescence in the deep-sea chaetognath Eukrohnia fowleri is reported for the first time, and behavioral, morphological, and chemical characteristics of bioluminescence in chaetognaths are examined. Until this study, the only known species of bioluminescent chaetognath was Caecosagitta macrocephala. The luminescent organ of that species is located on the ventral edge of each anterior lateral fin, whereas that of E. fowleri runs across the center of the tail fin on both dorsal and ventral sides. Scanning electron microscopy showed that the bioluminescent organs of both species consist of hexagonal chambers containing elongate ovoid particles-the organelles holding bioluminescent materials. No other luminous organism is known to use hexagonal packing to hold bioluminescent materials. Transmission electron microscopy of particles from C. macrocephala revealed a densely packed paracrystalline matrix punctuated by globular inclusions, which likely correspond to luciferin and luciferase, respectively. Both species use unique luciferases in conjunction with coelenterazine for light emission. Luciferase of C. macrocephala becomes inactive after 30 min, but luciferase of E. fowleri is highly stable. Although C. macrocephala has about 90 times fewer particles than E. fowleri, it has a similar bioluminescent capacity (total particle volume) due to its larger particle size. In situ observations of C. macrocephala from a remotely operated vehicle revealed that the luminous particles are released to form a cloud. The discovery of bioluminescence in a second chaetognath phylogenetically distant from the first highlights the importance of bioluminescence among deep-sea organisms.  相似文献   

5.
A list of the genera of living organisms known or believed to contain luminous species is provided in the Appendix, in a systematic context. The constraints on the accuracy of such a list and some aspects of the apparent distribution of bioluminescence are discussed.  相似文献   

6.
Live algae were found in the hepatopancreas and gonads of the Red Sea snail Strombus tricornis. These organs are constantly concealed within the upper whorls of the snail's shell. Light penetration was 5–15% of the incident light reaching the shell. Pigment analysis indicated the presence of chlorophyll a, c and peridinin, a composition resembling the Dinoflagellata. Chlorophyll a concentration in the algae was 1.18±0.36 pg chl/cell. 14C assimilation of isolated algae incubated in the light exceeded that of dark controls, demonstrating the photosynthetic activity of the endozoic algae.  相似文献   

7.
1. Many taxa of freshwater invertebrates show active upstream movements, particularly the snails. Hypotheses explaining this behaviour invoke the search for food or space, compensation for drift, avoidance of predation and hydrodynamic effects. The pervasiveness of upstream movements among remote lineages of snails (two subclasses, three orders, 10 families), however, suggests that snails may move upstream for mechanical rather than adaptive reasons.
2. It is proposed that upstream movements by snails are a function of torque on the snail's foot generated by hydrodynamic drag on the shell. When subject to high broadside drag-forces on their shells, snails are able to reduce torque and stabilize orientation only by directing their anterior aspect upstream.
3. Movements of the freshwater pleurocerid snail Elimia were studied by following marked free-ranging individuals in six streams in Alabama, USA (four species, eight populations).
4. Populations showed either no net movement (two streams) or significant upstream movements ranging to a mean of ≈40 m over a 3-month period (four streams). Movement patterns were stream specific rather than species or population specific. Within populations showing significant upstream movements, snails with shell lengths ≤10 mm showed little net movement. Larger snails showed movements from 0 to >200 m upstream.
5. A torque-constrained random walk model was used to perform a post hoc test of the hypothesis that upstream movements were a function of torque on the snail's foot generated by hydrodynamic drag on the shell. The model predicted upstream and size-dependent movement patterns that approximated those observed for snails in the field.  相似文献   

8.
李学燕  梁醒财 《昆虫知识》2006,43(5):736-741
生物荧光是活体生物自身可以发光的有趣生命现象。具有这一现象的生物存在于生物四界中,但目前关于这一现象的研究报道主要来自于昆虫,尤其是以萤火虫为代表的发光甲虫的研究。文章对发光甲虫的分类地位、生物荧光发生的原理、发光器官的类型、闪光的“开关”机制、生物荧光的生物学意义及其相关行为学研究进展等进行了详细介绍。此外,还简要提及了荧光生物及其荧光酶的应用。这对了解及探讨生物荧光现象、加强对中国的发光甲虫及其它发光生物的研究及保护利用具有一定的借鉴作用。  相似文献   

9.
The ability of free-swimming larval parasites to control emergence from their hosts can be critical in increasing the chances of successful infection transmission. For a group of estuarine trematodes, emergence of cercariae from their snail hosts is known to match favorable temperature, tidal activity, and light intensity. How the larvae time this behavior is not well understood, but the pathway that the larvae take through their host may play a role. Through video and histological analysis, we were able to identify the snail's anus as the emergence point and the peri-intestinal sinus dorsal to the intestines as the route by which they reach that point. By moving through this open sinus, the larvae have an energetically efficient pathway to reach their emergence point while minimizing damage to the host. Most importantly, it allows control over emergence to be maintained by the parasite, not the host, thus increasing the chances of the larva successfully reaching its intended destination.  相似文献   

10.
An original working experimental unit for noninvasive objective recording of the magnitude of escape reaction of a ground snail evoked by tactile stimulation is described. A. snail creeps upwards over the cylinder rotating around its horizontal axis. A watching device ensures a constant snail position relative to a light source and a photoelement. A device for tactile stimulation which provides graduated energy of an impact is constructed on the basis of the magnetic circuit of a loudspeaker. In response to a tactile stimulus a snail pulls in its feelers, head, and foot, and the area of snail's shadow decreases. These changes are indicated by the photoelement.  相似文献   

11.
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi-level convergent evolution’. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long-standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi-level convergent evolution.  相似文献   

12.
Although the taxonomy of click beetles (family Elateridae) has been studied extensively, inconsistencies remain. We examine here the relationships between species of Elateridae based on partial sequences of nuclear 28S ribosomal DNA. Specimens were collected primarily from Japan, while luminous click beetles were also sampled from Central and South America to investigate the origins of bioluminescence in Elateridae. Neighbor-joining, maximum-parsimony, and maximum-likelihood analyses produced a consistent basal topology with high statistical support that is partially congruent with the results of previous investigations based on the morphological characteristics of larvae and adults. The most parsimonious reconstruction of the "luminous" and "nonluminous" states, based on the present molecular phylogeny, indicates that the ancestral state of Elateridae was nonluminous. This suggests that the bioluminescence in click beetle evolved independent of that of other luminous beetles, such as Lampyridae, despite their common mechanisms of bioluminescence.  相似文献   

13.
The bioluminescence of the luminous mushroom, Lampteromyces japonicus, was studied by using the mushroom gills and also the luminous mycelia, the latter being cultured from the isolated spores and grown in a potato sucrose medium. The luminescence intensity of the mushroom gills and the cultured mycelia was measured in an aqueous suspension under various conditions. The original intensity was enhanced by exposing the luminous cells to oxygen for several hours or to acids or bases for a short period. This enhancement enabled measurement of their bioluminescence spectra which were identical to the fluorescence spectrum of riboflavin, having a maximum at 524 nm. The green fluorescent substance was extracted with cold water from the mushroom and it was identified as riboflavin by spectroscopic and chromatographic analyses. Riboflavin was concluded to be the light emitter of this mushroom.  相似文献   

14.
Night‐time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0‐h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made.  相似文献   

15.
The genetics of the snail Biomphalaria glabrata is better characterized than that of any other intermediate host of schistosomes of humans. Using techniques of selective breeding, several snail stocks have been developed that consistently display resistant or susceptible phenotypes. Investigators using these stocks have learned that several snail and parasite genes influence the course of parasite development. Here, Charles Richards, Matty Knight and Fred Lewis discuss the importance of the snail's genetics in categorizing resistance in this complex invertebrate, some recent molecular evidence that may help us understand several of the problems that still remain, and some challenges lying ahead for investigators in this field.  相似文献   

16.
Freshly collected samples of luminous mycelium of a terrestrial fungus from Panama were investigated for their bioluminescence characteristics. Taxonomic identification of fungal species could not be determined because of the lack of fruiting bodies. Fluorescence excited by 380 nm illumination had an emission spectrum with a main peak at 480 nm and additional chlorophyll peaks related to the wood substrate. Bioluminescence appeared as a continuous glow that did not show any diel variation. The light production was sensitive to temperature and decreased with temperatures higher or lower than ambient. Bioluminescence intensity was sensitive to hydration, increasing by a factor of 400 immediately after exposure to water and increasing by a factor of 1 million after several hours. This increase may have occurred through dilution of superoxide dismutase, which is a suppressive factor of bioluminescence in fungus tissue. The mycelium typically transports nutritive substances back to the fruiting body. The function of luminescent mycelium may be to increase the intensity of light from the fungus and more effectively attract nocturnal insects and other animals that serve as disseminating vectors for fungal spores.  相似文献   

17.
Bioluminescence has been reported to occur in 17 phyla and at least 700 genera. However, the luciferin chemistry of the majority of luminous organisms has yet to be determined. The most common chemistry which is known to occur in deep sea bioluminescence is imidazolopyrazine bioluminescence. The main aim of this study was to examine the phyletic and tissue distribution of imidazolopyrazine luciferins. This will facilitate analysis of imidazolopyrazine bioluminescence at the cellular and molecular levels and, in particular, how and when its chemistry is controlled and expressed in vivo. Assays for both known imidazolopyrazines were established and a range of fresh organisms and tissue were analysed, i.e. fish, cephalopods, copepods, ostracods, amphipods and euphausiids. The main findings were that the number of genera in which coelenterazine has been detected has been increased from 52 to about 90. Also, for the first time, the other known imidazolopyrazine luciferin,Vargula-type luciferin, was quantified in the ostracod Cypridina dentata, but was not detected in any of its potential predators. Neither imidazolopyrazine luciferin was found in several luminous stomiiform fish assayed. Coelenterazine was measured in the livers and photophores of a number of cephalopods and it is apparent that coelenterazine is responsible for both modes of luminescence. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Isolation of bacteria from the luminous organ of the fish Monocentris japonica has revealed that the organ contains a pure culture of luminous bacteria. For the four fish examined, all contained Photobacterium fischeri as their luminous bacterial symbiont. This is the first time that P. fischeri has been identified in a symbiotic association. A representative isolate (MJl) of the light organ population was selected for in vivo studies of its luminous system. Several physiological features suggest adaptation for symbiotic existence. First, MJl has been shown to produce and respond to an inducer of luciferase that could accumulate in the light organ. Secondly, the specific activity of light production was seen to be maximal under low, growth-limiting concentrations of oxygen. Thirdly, unlike another luminous species (Beneckea harveyi), synthesis of the light production system of these bacteria is not catabolite repressed by glucose--a possible source of nutrition in the light organ. Fourthly, when grown aerobically on glucose these bacteria excrete pyruvic acid into the medium. This production of pyruvate is a major process, accounting for 30-40% of the glucose utilized and may serve as a form of regulatory and nutritional communication with the host.  相似文献   

19.
发光蚯蚓的发光体系研究进展   总被引:1,自引:0,他引:1  
修立辉  梁醒财 《四川动物》2007,26(1):201-205
发光蚯蚓在世界范围内广泛分布。大多数发光蚯蚓的发光体系包含于蚯蚓体腔液内充满颗粒的细胞内。早期对不同种发光蚯蚓的生理学及生物化学方面的对比研究表明大多数发光蚯蚓的发光体系是类似的,但最近对线蚓科的两个种的研究发现它们不仅发光源的定位特殊,而且发光反应所需要的成分也明显不同于其他种类。本文对发光蚯蚓的发光器官和发光体系的研究现状及其进展进行了综述,并将有代表性的发光蚯蚓的发光体系进行了对比总结。  相似文献   

20.
Light production by organisms, or bioluminescence, has fascinated not only scientists but also ordinary people all over the world, and it has been especially so in Japan. Here we review the biological information available to date for all luminous terrestrial animals known from Japan, particularly focusing on their diversity and systematics, their biology and ecology in Japan, and putative function and biochemistry of their luminescence. In total 58 luminous terrestrial animals have been described from Japan, which consist of 50 fireflies (Coleoptera: Lampyridae), one glowworm beetle (Coleoptera: Phengodidae), two fungus gnats (Diptera: Keroplatidae), one springtail (Collembola), one millipede (Diplopoda), one centipede (Chilopoda) and two earthworms (Oligochaeta). For all except some firefly species, the DNA "barcode" sequences of a cytochrome oxidase subunit I region are provided. We also introduce how intricately the seasonal appearance and glimmering of luminous insects, in particular those of fireflies, have been interwoven into the culture, art, literature and mentality of Japanese people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号