首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
Abstract. The metafemoral apodeme, an essential element of the unique jumping mechanism in the chrysomelid subfamily Alticinae (flea beetles), was studied in fifty-three Palearctic species of twenty-six genera. Inter-generic differences are noted and these genera separate into seven groups according to their apodeme structure. The significance of the metafemoral apodeme in phylo-genetic relationships at the generic and subfamilial level is discussed.  相似文献   

2.
Abstract. The metafemoral spring (jumping organ) was known previously only from all Alticinae (Chrysomelidae), one genus of Bruchidae, and two species of Rhynchaeninae (Curculionidae). Here this spring is reported from three subfamilies, seven tribes and twenty-two genera of Curculionidae (three Rhychaeninae, one Erirhininae (Derelomini), and eighteen Ceutorhynchinae) and also from five genera of Buprestidae (four Agrilinae and one Trachyinae). Jumping in Hexapoda is discussed, specifically in the other jumping Coleopteran families that were examined for the presence of the spring (e.g. Melandryidae, Mordellidae, Scraptiidae, Eucinetidae, Limnichidae, Scirtidae and Anthribidae). The phylogenetic value of the metafemoral spring is still unclear; however, there are indications that it is useful in assessing relationships among weevil tribes. As in Alticinae, Curculionidae and Buprestidae have constant intra-generic spring morphology and inter-generic differences. The spring in Bruchidae, Curculionidae and Buprestidae has a simpler morphology than in the Alticinae, but still possesses the features necessary for jumping (metatibial extension). The metafemoral spring has apparently evolved independently in Alticinae, Bruchidae, Curculionidae and Buprestidae, and is an example of convergent evolution.  相似文献   

3.
Drakensbergianella rudebecki, a new genus and new species of flea beetle (Chrysomelidae, Alticinae) found at high elevations from Southern Africa (Drakensberg mountains) is described. This new genus is closely related to the genus Gabonia Jacoby, 1893 but is easily distinguishable mainly by: the metasternum shorter than the length of the middle coxal cavities; the legs with femora and tibiae clearly elongate, especially the hind ones; the antennae generally longer than body in both sexes, especially in males; the metafemoral spring with inner side of the ventral lobe not angled; the metathoracic wings strongly reduced. Line drawings of male and female genitalia, metafemoral springs, and scanning electronic micrographs of particular morphological aspects of the taxa considered are provided. Finally, a brief discussion about Gabonia and related genera in the Afrotropical region with a key for the identification, is also reported. Moreover, the following new combination is proposed: Longitarsus ruandensis Weise, 1910 = Montiaphthona ruandensis Weise, 1910 n. comb.  相似文献   

4.
Recent phylogenetic studies of flea beetles (Alticinae) based on morphological or molecular data have focused on the relationship and possible paraphyly with respect to the closely related Galerucinae, while the supra-generic classification mainly dates back to the 19th century. Here, phylogenetic analysis was performed on DNA sequences for two mitochondrial (rrnL and cox1) and two nuclear (SSU and LSU rRNA) genes from 158 genera and 165 species that cover most suprageneric groups of flea beetles proposed in the older literature. Various alignment strategies and tree search methods were used to test the stability of major clades. Besides confirmation of the placement of several alticine lineages within Galerucinae, a preliminary framework for classification of the main alticine clades was obtained. It is proposed to recognize 18 groups of genera based on well-supported nodes. These include the Altica, Amphimela, Aphthona, Blepharida, Chabria, Chaetocnema, Dibolia, Disonycha, Griva, Lactica, Longitarsus, Manobia, Monoplatus, Nisotra, Oedionychis, Pentamesa, Phygasia and Pseudodera groups. These groups provide a novel perspective to the existing classification. The analysis of 14 morphological characters used in the traditional classification of Alticinae and Galerucinae revealed high levels of homoplasy with respect to the DNA-based tree, but significant hierarchical structure in most of them. Even if not unique to any particular group of genera, these traits largely corroborate the groupings established with DNA sequences.  相似文献   

5.
应用聚丙烯酰胺凝胶电泳方法分析研究了叶甲科3亚科13种昆虫的酯酶同工酶.结果显示,其聚类结果与传统分类结果基本相一致,说明以酯酶同工酶作为研究手段来进行叶甲类昆虫亚科以下阶元的分类是可行的,同时也说明了它们酯酶同工酶酶谱的差异和其分类地位是一致的;但跳甲亚科和叶甲亚科先聚为一类,再与萤叶甲亚科聚为一类,与前人的研究有差异,作者认为:酯酶同工酶的编码基因可能是快进化单位,在解决亚科以下阶元的系统关系时是很好的分子标记,而对于研究叶甲科、亚科间的系统关系,就不一定很合适.  相似文献   

6.
1. New logical and analytical frameworks for studying functional traits have led to major advances in plant and freshwater ecology at local and global scales. The ecological and taxonomic diversity of terrestrial adult beetles (Coleoptera) means that functional trait approaches should have considerable power to illuminate the function not only of these animals but also of the ecosystems in which they occur. 2. Even though the functional trait concept is not new in ecology, it is still plagued with inconsistencies in methodology and terminology. Plant‐based studies have shown that an integrated and relatively consistent functional trait approach facilitates comparisons between studies, and allows the full utility and predictive capacity of trait‐based approaches to be realised. 3. This review outlines a logical framework for adult beetle functional trait studies using uniform terminology and methodology similar to those used by plant ecologists. Beetle life‐history and ecomorphological trait studies are synthesised and it is shown that a combination of both is analogous to the functional trait approach. A general functional trait list for beetles and potential functional links is outlined, as are potential analysis approaches. A consistent functional trait approach, coupled with advances in molecular techniques, has the capability to provide deeper insights into beetle community assembly and how beetles impact ecosystems and will enable worldwide comparisons and predictions to be made.  相似文献   

7.
The Galerucinae (Coleoptera: Chrysomelidae) sensu stricto (true galerucines) comprise a large assemblage of diverse phytophagous beetles containing over 5000 described species. Together with their sister taxon, the flea beetles, which differ from true galerucines by having the hind femora usually modified for jumping, the Galerucinae sensu lato comprises over 13 000 described species and is the largest natural group within the Chrysomelidae. Unlike the flea beetles, for which robust hierarchical classification schemes have not been erected, an existing taxonomic structure exists for the true galerucines, based mostly on the works of the late John Wilcox. In the most recent taxonomic list of the Galerucinae sensu stricto, five tribes were established comprising 29 sections housing 488 genera. The majority of the diversity within these tribes is found within the tribe Luperini, in which two genera, Monolepta and Diabrotica, are known to contain over 500 described species. Here, we extend the work from previous phylogenetic studies of the Galerucinae by analysing four amplicons from three gene regions (18S and 28S rRNA; COI) representing 249 taxa, providing the largest phylogenetic analysis of this taxon to date. Using two seven‐state RNA models, we combine five maximum likelihood models (RNA + DNA for the rRNAs; three separate DNA models for the COI codon positions) for these partitions and analyse the data under likelihood using Bayesian inference. The results of these two analyses are compared with those from equally weighted parsimony. Instead of choosing the results from one optimality criterion over another, either based on statistical support, tree topology or philosophical predisposition, we elect to draw attention to the similar results produced by all three analyses, illustrating the robustness of the data to these different analytical methods. In general, the results from all three analyses are consistent with each other and previous molecular phylogenetic reconstructions for Galerucinae, except that increased taxon sampling for several groups, namely the tribes Hylaspini and Oidini, has improved the phylogenetic position of these taxa. As with previous analyses, under‐sampled taxa, such as the Old World Metacyclini and all sections of the subtribe Luperina, continue to be unstable, with the few taxa representing these groups fluctuating in their positions based on the implemented optimality criterion. Nonetheless, we report here the most comprehensive phylogenetic estimation for the Galerucinae to date.  相似文献   

8.
With efficient sequencing techniques, full mitochondrial genomes are rapidly replacing other widely used markers, such as the nuclear rRNA genes, for phylogenetic analysis but their power to resolve deep levels of the tree remains controversial. We studied phylogenetic relationships of leaf beetles (Chrysomelidae) in the tribes Galerucini and Alticini (root worms and flea beetles) based on full mitochondrial genomes (103 newly sequenced), and compared their performance to the widely sequenced nuclear rRNA genes (full 18S, partial 28S). Our results show that: (i) the mitogenome is phylogenetically informative from subtribe to family level, and the per‐nucleotide contribution to nodal support is higher than that of rRNA genes, (ii) the Galerucini and Alticini are reciprocally monophyletic sister groups, if the classification is adjusted to accommodate several ‘problematic genera’ that do not fit the dichotomy of lineages based on the presence (Alticini) or absence (Galerucini) of the jumping apparatus, and (iii) the phylogenetic results suggest a new classification system of Galerucini with eight subtribes: Oidina, Galerucina, Hylaspina, Metacyclina, Luperina, Aulacophorina, Diabroticina and Monoleptina.  相似文献   

9.
张勇  杨星科 《昆虫知识》2004,41(4):308-317
跳甲作为叶甲科Chrysomelidae中最大的一个类群具有重要的经济意义。该文简述了跳甲亚科Alticinae的分类研究历史 ,回顾了世界及中国的研究概况 ,从分类地位、族级阶元的划分、支序系统学及分子系统学等方面综述了跳甲亚科的最新研究进展 ,并简要讨论了存在的问题及研究前景  相似文献   

10.
Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.  相似文献   

11.
《BBA》2023,1864(1):148916
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.  相似文献   

12.
The environmental impact of genetically modified (GM) plants in experimental fields has been examined in several ways, in particular with respect to the dynamics of specific nontarget organisms. The approach of sampling for biodiversity in agroecosystems to compare complex patterns could also be useful in studying potential disruptions caused by GM crops. In this study, we set up replicated field plots of Bt-expressing eggplants and near isogenic untransformed eggplants as a control. We monitored the presence and abundance of herbivore and predator arthropods in weekly visual samplings of the plant canopy for three growing seasons (2001-2003). Insect species were pooled in organismal taxonomic units (OTUs); three multivariate methods were used to compare species assemblage as an estimate of insect biodiversity. This multistep statistical approach proved to be efficient in recognizing association patterns, as evidenced by the data for the target species Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) clearly showing a significant association with the control plots. All the analyses indicate a comparable species assemblage between transgenic and near isogenic eggplant areas. Our results suggest that some taxa may warrant more specific study. For example, Alticinae beetles (Coleoptera: Chrysomelidae) were alternatively more abundant in either of the two treatments, and their overall abundance was significantly higher on transgenic eggplants. In light of these results and because of their taxonomic proximity to the target species, these herbivores may represent an important nontarget group to be further studied. Moreover, some sap feeders (e.g., Homoptera: Cicadellidae) were more abundant on Bt-expressing plants in some samples in all 3 yr.  相似文献   

13.
Ribak G  Weihs D 《PloS one》2011,6(6):e20871
To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant “takeoff” angle (79.9°±1.56°, n = 9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.  相似文献   

14.
Morphological and behavioral characters are frequently examined for comparative studies. Unlike morphology, a single behavioral trait is difficult to subdivide as multiple characters, even when achieved by many evolutionary changes. Therefore, when similar behavioral traits evolved independently among closely related taxa, their distinction is difficult. Almost all members of the suborder Auchenorrhyncha (Insecta: Hemiptera) possess a jumping ability that uses metathoracic muscles, and this behavioral trait has been regarded as a synapomorphy. In this study, the anatomical observations of metathoracic muscles revealed that highly elaborated jumping ability was gained independently within the suborder, although the evolution of jumping ability might have been initiated at their common ancestor. Our results provide an example of identifying a true evolutionary pathway by dissecting a behavioral character into mechanical elements.  相似文献   

15.
Data and explicit taxonomic ranking criteria, which minimize taxonomic change, provide a scientific approach to modern taxonomy and classification. However, traditional practices of opinion-based taxonomy (i.e., mid-20th century evolutionary systematics), which lack explicit ranking and naming criteria, are still in practice despite phylogenetic evidence. This paper discusses a recent proposed reclassification of weevils that elevates bark and ambrosia beetles (Scolytinae and Platypodinae) to the ranks of Family. We demonstrate that the proposed reclassification 1) is not supported by an evolutionary systematic justification because the apparently unique morphology of bark and ambrosia beetles is shared with other unrelated wood-boring weevil taxa; 2) introduces obvious paraphyly in weevil classification and hence violates good practices on maintaining an economy of taxonomic change; 3) is not supported by other taxonomic naming criteria, such as time banding. We recommend the abandonment of traditional practices of an opinion-based taxonomy, especially in light of available data and resulting phylogenies.  相似文献   

16.
We describe the kinematics and performance of the natural jump in the weevil Orchestes fagi (Fabricius, 1801) (Coleoptera: Curculionidae) and its jumping apparatus with underlying anatomy and functional morphology. In weevils, jumping is performed by the hind legs and involves the extension of the hind tibia. The principal structural elements of the jumping apparatus are (1) the femoro-tibial joint, (2) the metafemoral extensor tendon, (3) the extensor ligament, (4) the flexor ligament, (5) the tibial flexor sclerite and (6) the extensor and flexor muscles. The kinematic parameters of the jump (from minimum to maximum) are 530–1965 m s?2 (acceleration), 0.7–2.0 m s?1 (velocity), 1.5–3.0 ms (time to take-off), 0.3–4.4 μJ (kinetic energy) and 54–200 (g-force). The specific joint power as calculated for the femoro-tibial joint during the jumping movement is 0.97 W g?1. The full extension of the hind tibia during the jump was reached within up to 1.8–2.5 ms. The kinematic parameters, the specific joint power and the time for the full extension of the hind tibia suggest that the jump is performed via a catapult mechanism with an input of elastic strain energy. A resilin-bearing elastic extensor ligament that connects the extensor tendon and the tibial base is considered to be the structure that accumulates the elastic strain energy for the jump. According to our functional model, the extensor ligament is loaded by the contraction of the extensor muscle, while the co-contraction of the antagonistic extensor and flexor muscles prevents the early extension of the tibia. This is attributable to the leverage factors of the femoro-tibial joint providing a mechanical advantage for the flexor muscles over the extensor muscles in the fully flexed position. The release of the accumulated energy is performed by the rapid relaxation of the flexor muscles resulting in the fast extension of the hind tibia propelling the body into air.  相似文献   

17.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data.  相似文献   

18.
19.
利用扫描电镜和解剖镜对西藏色季拉山区分布的龙胆科6属20种植物种子微形态进行观察研究。结果显示:这20种植物的种子颜色有黑色、黄色、黑褐色、黄褐色、灰褐色和红棕色6种;种子形状分为长卵球形、卵球形、椭圆球形、矩圆形和近球形;表皮纹饰可分为4种类型,即网纹型、条纹型、疣状型和嚼烂型,其中网纹型又细分为6个亚型。根据种子微形态特征,笔者对龙胆科相关属的进化趋势、分类学意义和分类鉴定等进行了讨论,认为獐牙菜属(Swertia L.)和龙胆属(Gentiana(Tourn.)L.)进化程度较高;从种子微形态特征上看肋柱花属(Lomatogonium A.Br.)、花锚属(Halenia Borkh.)和假龙胆属(Gentianella Moench.)间有较近的亲缘关系;龙胆科各属种子表皮纹饰特征与分类系统基本吻合。本研究表明种子微形态在植物分类研究中具有十分重要的意义,可作为植物系统划分、鉴定和进化研究的参考性状。  相似文献   

20.
Computer simulation was used to test Smith's (1994) correction for phylogenetic nonindependence in comparative studies. Smith's method finds effective N, which is computed using nested analysis of variance, and uses this value in place of observed N as the baseline degrees of freedom (df) for calculating statistical significance levels. If Smith's formula finds the correct df, distributions of computer-generated statistics from simulations with observed N nonindependent species should match theoretical distributions (from statistical tables) with the df based on effective N. The computer program developed to test Smith's method simulates character evolution down user-specified phylogenies. Parameters were systematically varied to discover their effects on Smith's method. In simulations in which the phylogeny and taxonomy were identical (tests of narrow-sense validity), Smith's method always gave conservative statistical results when the taxonomy had fewer than five levels. This conservative departure gave way to a liberal deviation in type I error rates in simulations using more than five taxonomic levels, except when species values were nearly independent. Reducing the number of taxonomic levels used in the analysis, and thereby eliminating available information regarding evolutionary relationships, also increased type I error rates (broad-sense validity), indicating that this may be inappropriate under conditions shown to have high type I error rates. However, the use of taxonomic categories over more accurate phylogenies did not create a liberal bias in all cases in the analysis performed here. The effect of correlated trait evolution was ambiguous but, relative to other parameters, negligible. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号