首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The genetics and biology of vertebrate sex determination.   总被引:2,自引:0,他引:2  
P Koopman 《Cell》2001,105(7):843-847
  相似文献   

3.
4.
The convergence of genetic and molecular technologies has led to the identification of a number of genes for male sex determination. The observation of chromosomal translocations, deletions, and duplications in sex reversed individuals was instrumental for the positional cloning of SRY, SOX9, WT1, and DAX1. Cloning by protein-DNA interaction was required for the identification of SF1. The observation of an extended phenotype for the alpha thalassemia-mental retardation syndrome assigned a role for XH2 in the testicular determining process. Over the next several years, new sex determining genes will be identified by linkage analysis in large families with multiple sex reversed members, comparative genomic hybridization of sex reversed individuals, and database searches for genes that encode interacting proteins or paralogs of other species. Given the apparent differences in the sex determining mechanisms of even closely related species, the roles of all of these genes will require confirmation by demonstrating expression in human gonadal ridge at the critical time, and that mutations result in sex reversal.  相似文献   

5.
6.
7.
Genetic mechanisms underlying male sex determination in mammals   总被引:1,自引:0,他引:1  
Genetic control of gonadal development proceeds through either the male or female molecular pathways, driving bipotential gonadal anlage differentiation into a testis or ovary. Antagonistic interactions between the 2 pathways determine the gonadal sex. Essentially sex determination is the enhancement of one of the 2 pathways according to genetic sex. Initially, Sry with other factors upregulatesSox9 expression in XY individuals. Afterwards the expression ofSox9 is maintained by a positive feedback loop withFgf9 and prostaglandin D2 as well as by autoregulative ability of Sox9. If these factors reach high concentrations, then Sox9 and/or Fgf9 may inhibit the female pathway. Surprisingly, splicing, nuclear transport, and extramatrix proteins may be involved in sex determination. The male sex determination pathway switches on the expression of genes driving Sertoli cell differentiation. Sertoli cells orchestrate testicular differentiation. In the absence of Sry, the predomination of the female pathway results in the realization of a robust genetic program that drives ovarian differentiation.  相似文献   

8.
9.
10.
In the fungus Achlya, sexual development in the male strain E87 is mediated by the steroid hormone antheridiol. Treatment of vegetatively growing cells of E87 with antheridiol resulted in changes in the [35S]methionine labeling of several secreted proteins. The most heavily labeled group of proteins observed in the secreted fraction from control cells appeared on one-dimensional gels as a prominent wide band which could be resolved into three closely spaced components with relative molecular weights (MWs) of 57, 54, and 50 kD, respectively. After hormone treatment the two lower MW proteins of the group were barely detectable. Concomitant with the observed reductions in the labeling of the 54 and 50 kD proteins was the increased labeling of a doublet of very prominent proteins with relative MWs of 44.4 and 43 kD, respectively. The results of experiments with Endoglycosidase H suggested that the 44.4 and 43 kD proteins seen in hormone-treated cultures, might result from the removal or reduced synthesis of high mannose oligosaccharide groups found on the 54 and 50 kD proteins normally seen in control cultures. Additional support for this suggestion was provided by the observation that the 54 and 50 kD proteins from control cultures appeared to bind to conA columns and to be eluted with alpha-methylmannoside, while there was little or no binding of the 44.4 and 43 kD proteins from hormone-treated cells. Although other possibilities are not excluded, the results are suggestive of a steroid hormone-induced alteration in glycoprotein processing. The functions of the observed hormonally-responsive secreted proteins as well as those of the secreted proteins in non-hormone-treated cultures, are not known at this time.  相似文献   

11.
Establishment of germline sexual identity is critical for production of male and female germline stem cells, as well as sperm versus eggs. Here we identify PHD Finger Protein 7 (PHF7) as an important factor for male germline sexual identity in Drosophila. PHF7 exhibits male-specific expression in early germ cells, germline stem cells, and spermatogonia. It is important for germline stem cell maintenance and gametogenesis in males, whereas ectopic expression in female germ cells ablates the germline. Strikingly, expression of PHF7 promotes spermatogenesis in XX germ cells when they are present in a male soma. PHF7 homologs are also specifically expressed in the mammalian testis, and human PHF7 rescues Drosophila Phf7 mutants. PHF7 associates with chromatin, and both the human and fly proteins bind histone H3 N-terminal tails with a preference for dimethyl lysine 4 (H3K4me2). We propose that PHF7 acts as a conserved epigenetic "reader" that activates the male germline sexual program.  相似文献   

12.
13.
Antenatal determination of sex in the baboon was performed by evaluating the percentage of sex chromatin bodies present in the epithelial cells of amniotic fluid obtained during or immediately following cesarean section. Female sex chromatin patterns revealed a mean of 39.2% positive sex chromatin; the mean in males was less than 5%. This procedure is accurate and simple to perform.  相似文献   

14.
15.
脊椎动物性别决定模式一直是进化生物学领域的热点问题,它对个体发育和自然种群性比组成都具有深刻的影响。性别决定模式根据主要成因可分为基因依赖型性别决定(GSD)和环境依赖型性别决定(ESD)2大类,其中温度依赖型性别决定(TSD)又是ESD中的主要性别决定模式。多数羊膜类脊椎动物具有稳定的GSD模式,而爬行动物的性别决定模式则丰富多样,即使是亲缘关系很近的物种也具有不同的模式。研究者们以爬行动物为模型动物开展了许多关于脊椎动物性别决定方面的工作。本文综述了近年来爬行动物TSD的最新研究进展,回顾了温度和性激素对TSD爬行类动物的影响及其进化适应意义,以及气候变化与TSD爬行类的关系,并提出了今后爬行动物TSD研究的重点。  相似文献   

16.
Steroid hormones are lipophilic suggesting they intercalate into the bilayer of target cell plasma membranes, potentially altering the fluidity and function of the membrane. The present study measured the effects of steroidal exposure on both phospholipid fluidity and integral protein mobility. Studies were performed on the effects of a variety of steroids on phosphatidylcholine liposomes, synaptosomal plasma membranes and sarcoplasmic reticulum membranes. Progesterone decreased the lipid fluidity, whereas testosterone had no effect on lipid movement. The estrogen, 17 beta-estradiol, an aromatised metabolite of testosterone, increased lipid mobility. In each case, the steroid action was concentration-dependent. The steroids all increased the activity of the Ca2+ ATPase of SR membrane, in keeping with their effects on this enzyme's aggregation state. The results suggest that, although lipid fluidity is a factor influencing protein activity, their mobility within the bilayer is the primary determinant of enzyme activity in the membrane for most proteins.  相似文献   

17.
Understanding how genes influence behavior, including sexuality, is one of biology's greatest challenges. Much of the recent progress in understanding how single genes can influence behavior has come from the study of innate behaviors in the fruit fly Drosophila melanogaster. In particular, the elaborate courtship ritual performed by the male fly has provided remarkable insights into how the neural circuitry underlying sexual behavior--which is largely innate in flies--is built into the nervous system during development, and how this circuitry functions in the adult. In this review we will discuss how genes of the sex determination pathway in Drosophila orchestrate the developmental events necessary for sex-specific behaviors and physiology, and the broader lessons this can teach us about the mechanisms underlying the development of sex-specific neural circuitry.  相似文献   

18.
Dear Editor, Sex determination is one of the most fundamental develop-ment processes,as gender is the first and most important identity of human.In most mammals...  相似文献   

19.
Summary Satellite DNA isolated from female Elapid snakes contains nucleotide sequences which are quantitatively derived from the W sex-determining chromosome. Certain of these sequences are highly conserved in vertebrates, including mammals, where they are arranged in a sex-specific pattern in Southern blots. Sex reversed mice (Sxr) show a DNA arrangement of these sequences in conformity with their phenotypic sex, suggesting that this DNA is closely connected with the determination of sex. In situ hybridization of the snake sequences with mouse chromosomes reveals a concentration of related DNA at the proximal tip of the mouse Y chromosome. The possible nature and significance of these observations is discussed.  相似文献   

20.
Environmental sex determination (ESD) permits adaptive sex choice under patchy environmental conditions, where the environment affects sex-specific fitness and where offspring can predict their likely adult status by monitoring an appropriate environmental cue. For Gammarus duebeni, an amphipod with ESD, it has been proposed that this flexible sex determination system is adaptive because males gain more from large size. Under ESD, young which are born earlier in the season become mostly males and, experiencing longer to grow, are therefore larger at breeding than females which are born later in the season. In order to test the hypothesis that ESD is adaptive for this species we investigated the relationship between size and fitness for both males and females, in a population of G. duebeni known to have ESD. We measured size related pairing success and fecundity, and used these two measures to calculate the relative fitness gains achieved through an increase in size for either sex. The fitness of both males and females increased with size, but males gained more from an increase in size than did females, throughout the breeding season. The data support the adaptive explanation for the evolution and maintenance of ESD in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号