首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine receptors mediating synaptic inhibition are heteromeric proteins constituted of alpha and beta subunits. The mammalian GlyR subunits constitute a subgroup in the superfamily of ligand-gated ionic channels. To compare the evolutionary events in the mammalian and teleostean lineages for the receptor family, we first undertook systematic cloning of the constitutive subunits of the zebrafish glycine receptor. The isolation of two alpha subunits (alphaZ1 and alphaZ2) and one beta subunit (betaZ) has been reported previously and we report here the characterization of two novel alpha subunits, alphaZ3 and alphaZ4, increasing the known zebrafish subunits number to four alpha and one beta. Establishment of phylogenetic relationships reveals that alphaZ1, alphaZ3 and betaZeta are orthologous to mammalian alpha1, alpha3 and beta subunits. However, two zebrafish GlyRalpha subunit genes are orthologous to the unique avian and mammalian alpha4 subunit revealing a duplication of the alpha4 gene in zebrafish. Whole-mount in situ hybridization in 24-hours post fertilization (hpf) and 52-hpf embryos of the daughter gene products display very different expression patterns indicating distinct functions of the duplicated genes. Gene mapping reveals that the two duplicated genes are localized on two different linkage groups (LG5 and LG22) as would be daughter genes resulting from a large-scale duplication of the ancestral genome. Finally, we report that a linked pair of genes on human chromosome 4 (alpha3 and beta) is also linked on linkage group 1 in zebrafish (alphaZ3 and betaZ) as a consequence of a mosaic conserved syntheny.  相似文献   

2.
Chaperonins are multisubunit double-ring complexes that mediate the folding of nascent proteins [1] [2]. In bacteria, chaperonins are homo-oligomeric and are composed of seven-membered rings. Eukaryotic and most archaeal chaperonin rings are eight-membered and exhibit varying degrees of hetero-oligomerism [3] [4]. We have cloned and sequenced seven new genes encoding chaperonin subunits from the crenarchaeotes Sulfolobus solfataricus, S. acidocaldarius, S. shibatae and Desulfurococcus mobilis. Although some archaeal genomes possess a single chaperonin gene, most have two. We describe a third chaperonin-encoding gene (TF55-gamma) from two Sulfolobus species; phylogenetic analyses indicate that the gene duplication producing TF55-gamma occurred within crenarchaeal evolution. The presence of TF55-gamma in Sulfolobus correlates with their unique nine-membered chaperonin rings. Duplicate genes (paralogs) for chaperonins within archaeal genomes very often resemble each other more than they resemble chaperonin genes from other archaea. Our phylogenetic analyses suggest multiple independent gene duplications - at least seven among the archaea examined. The persistence of paralogous genes for chaperonin subunits in multiple archaeal lineages may involve a process of co-evolution, where chaperonin subunit heterogeneity changes independently of selection on function.  相似文献   

3.
Evolution of GABA(A) receptor diversity in the human genome   总被引:3,自引:0,他引:3  
Russek SJ 《Gene》1999,227(2):213-222
Nowhere is the record of receptor evolution more accessible than in the organization of the 19 vertebrate genes coding for subunits of the major inhibitory neurotransmitter receptor in the central nervous system, the gamma-aminobutyric acid receptor (GABAAR). Co-expression of alpha, beta, and gamma subunit genes is necessary for the formation of a GABAAR that is potentiated by widely used anxiolytics, anticonvulsants, and hypnotics. The identification of alpha, beta, and gamma genes on chromosomes 4, 5, and 15 suggests that co-localization of a gamma gene with an alpha and beta may be important for brain function. We have now directly examined the organization of GABAAR subunit genes on human chromosomes. Estimates of physical distance using in situ hybridization to cells in interphase, and gene localization using hybridization to cells in metaphase demonstrate the existence of beta-alpha-alpha-gamma gene clusters in cytogenetic bands on chromosomes 4(p12) and 5(q34). Sequencing of PAC clones establishes intercluster conservation of a unique head-to-head configuration for alpha and beta genes on chromosomes 4, 5, and 15. Remarkably, phylogenetic tree analysis predicts the existence of a beta-alpha-gamma ancestral gene cluster in which internal duplication of an ancestral alpha was followed by cluster duplication, resulting in the relative chromosomal positions of modern GABAAR subunit genes in the human genome.  相似文献   

4.
Gong HY  Lin CJ  Chen MH  Hu MC  Lin GH  Zhou Y  Zon LI  Wu JL 《Gene》2004,338(1):35-46
Two distinct forms of zebrafish hepatocyte nuclear factor 1 (hnf1) were identified and referred to as hnf1alpha/tcf1 and hnf1beta/tcf2. Both hnf1 genes were shown to be expressed abundantly in liver, pancreas, gut and kidney. Zebrafish HNF1alpha and HNF1beta proteins contain all HNF1 signature domains including the dimerization domain, POU-like domain and atypical homeodomain. Sequence and phylogenetic analysis reveals that zebrafish hnf1alpha is closer to tetrapodian hnf1alpha than to tetrapodian hnf1beta and zebrafish hnf1beta is highly conserved with tetrapodian hnf1beta. Existences of hnf1alpha and hnf1beta in teleost zebrafish, tilapia and fugu suggest that hnf1 gene duplication might occur before the divergence of teleost and tetrapod ancestors. Zebrafish hnf1alpha and hnf1beta genes were mapped to linkage group LG8 and LG15 in T51 panel by RH mapping and are composed of 10 and 9 exons, respectively. Zebrafish hnf1beta gene with at least 11 genes in LG15 was identified to maintain the conserved synteny with those of human in chromosome 17 and those of mouse in chromosome 11. Our results indicate that distinct hnf1alpha and hnf1beta genes in teleosts had been evolved from the hnf1 ancestor gene of chordate.  相似文献   

5.
Chorionic gonadotropin (CG) is a critical signal in establishing pregnancy in humans and some other primates, but this placentally expressed hormone has not been found in other mammalian orders. The gene for one of its two subunits (CG beta subunit [CGbeta]) arose by duplication from the luteinizing hormone beta subunit gene (LHbeta), present in all mammals tested. In this study, 14 primate and related mammalian species were examined by Southern blotting and DNA sequencing to determine where in mammalian phylogeny the CGbeta gene originated. Bats (order Chiroptera), flying lemur (order Dermoptera), strepsirrhine primates, and tarsiers do not have a CGbeta gene, although they possess one copy of the LHbeta gene. The CGbeta gene first arose in the common ancestor of the anthropoid primates (New World monkeys, Old World monkeys, apes, and humans), after the anthropoids diverged from tarsiers. At least two subsequent duplication events occurred in the catarrhine primates, all of which possess multiple CGbeta copies. The LHbeta-CGbeta family of genes has undergone frequent gene conversion among the catarrhines, as well as periods of strong positive selection in the New World monkeys (platyrrhines). In addition, newly generated DNA sequences from the promoter of the CG alpha subunit gene indicate that platyrrhine monkeys use a different mechanism of alpha gene expression control than that found in catarrhines.  相似文献   

6.
The sequences of the linked alpha 2- and alpha 1-globin genes of the equine BI and BII haplotypes are greater than 99% identical within a 1.2-kb region extending from approximately 75 bp upstream of the putative cap site to a point approximately 150 bp 3' to the poly A addition signal. Differences between the alpha 2 and alpha 1 genes that are common to both haplotypes indicate that a major gene conversion occurred approximately 12 Myr ago and that this has been followed by shorter, more localized, conversions. Interhaplotype (allelic) comparisons at the alpha loci suggest that the BI and BII haplotypes have probably existed independently greater than or equal to 0.5 Myr and that the alpha 1 genes may have undergone a recent interchromosomal gene conversion.   相似文献   

7.
The DP region of the human major histocompatibility complex contains two alpha genes and two beta genes. The DP alpha 1 and beta 1 genes encode the expressed DP histocompatibility antigen molecule, while the DP alpha 2 and beta 2 genes are inactive in the haplotypes examined. Here we present the sequence of the two DP beta genes and of the expressed DP alpha 1 gene. Nucleotide sequence comparisons reveal a considerably greater degree of similarity between the two beta genes than between the two alpha genes. We propose that a duplication giving rise to the DP alpha gene pair evolutionarily preceded the corresponding DP beta gene duplication. We also propose, based on the orientation of other class II gene pairs, that the original DP molecule was encoded by the DP beta 1 and DP alpha 2 genes. At some stage during the evolution of the DP region both of the two pseudogenes appear to have been expressed.  相似文献   

8.
Comparisons between duplicated genes have shown that gene conversions play an important role in the evolution of multigene families. Previous comparisons have documented in the recently duplicated gamma-fetal globin genes of catarrhine primates, over 15 separate conversions affecting extensive stretches of coding and noncoding sequences. In the present study, delta- and beta- globin genes from a lower primate Tarsius syrichta, and the delta-globin gene of the Asian great ape, Pongo pygmaeus, have been isolated and sequenced. Comparisons of these sequences with other primate delta and beta sequences confirmed a previously reported conversion in an anthropoid ancestor and revealed additional conversions in basal primate, stem haplorhine, tarsier, and early lemur lineages. Conversions found between primate delta- and beta-globin genes contrast with those found in the gamma-genes in that delta-beta conversions appear much less frequently and are more restricted to regions conserved by selection (i.e. coding and 5'-regulatory sequences). These differences indicate that soon after a duplication occurs, conversions can be quite frequent and encompass extensive portions of the duplicated region. With time, sequence differences accumulate, particularly in noncoding regions, and limit both the frequency and size of the conversions. Sequences conserved by selection accumulate differences more slowly and are therefore subject to gene conversions for a longer period of time. Both unconverted and converted sequences were consistent in supporting the placement of tarsier with anthropoids.  相似文献   

9.
The hyperthermoacidophilic archaeon Sulfolobus shibatae contains group II chaperonins, known as rosettasomes, which are two nine-membered rings composed of three different 60 kDa subunits (TF55 alpha, beta and gamma). We sequenced the gene for the gamma subunit and studied the temperature-dependent changes in alpha, beta and gamma expression, their association into rosettasomes and their phylogenetic relationships. Alpha and beta gene expression was increased by heat shock (30 min, 86 degrees C) and decreased by cold shock (30 min, 60 degrees C). Gamma expression was undetectable at heat shock temperatures and low at normal temperatures (75-79 degrees C), but induced by cold shock. Polyacrylamide gel electrophoresis indicated that in vitro alpha and beta subunits form homo-oligomeric rosettasomes, and mixtures of alpha, beta and gamma form hetero-oligomeric rosettasomes. Transmission electron microscopy revealed that beta homo-oligomeric rosettasomes and all hetero-oligomeric rosettasomes associate into filaments. In vivo rosettasomes were hetero-oligomeric with an average subunit ratio of 1alpha:1beta:0.1gamma in cultures grown at 75 degrees C, a ratio of 1alpha:3beta:1gamma in cultures grown at 60 degrees C and a ratio of 2alpha:3beta:0gamma after 86 degrees C heat shock. Using differential scanning calorimetry, we determined denaturation temperatures (Tm) for alpha, beta and gamma subunits of 95.7 degrees C, 96.7 degrees C and 80.5 degrees C, respectively, and observed that rosettasomes containing gamma were relatively less stable than those with alpha and/or beta only. We propose that, in vivo, the rosettasome structure is determined by the relative abundance of subunits and not by a fixed geometry. Furthermore, phylogenetic analyses indicate that archaeal chaperonin subunits underwent multiple duplication events within species (paralogy). The independent evolution of these paralogues raises the possibility that chaperonins have functionally diversified between species.  相似文献   

10.
Summary The nucleotide sequences of the chloroplast genes for the alpha, beta and epsilon subunits of wheat chloroplast ATP synthase have been determined. Open reading frames of 1512 bp, 1494 bp and 411 bp are deduced to code for polypeptides of molecular weights 55201, 53796 and 15200, identified as the alpha, beta and epsilon subunits respectively by homology with the subunits from other sources and by amino acid sequencing of the epsilon subunit. The genes for the beta and epsilon subunits overlap by 4 bp. The gene for methionine tRNA is located 118 bp downstream from the epsilon subunit gene. Comparisons of the deduced amino acid sequences of the alpha and beta subunits with those from other species suggest regions of the proteins involved in adenine nucleotide binding.  相似文献   

11.
Evolution of nicotinic acetylcholine receptor subunits   总被引:7,自引:0,他引:7  
A phylogenetic tree of a gene family of nicotinic acetylcholine receptor subunits was constructed using 84 nucleotide sequences of receptor subunits from 18 different species in order to elucidate the evolutionary origin of receptor subunits. The tree constructed showed that the common ancestor of all subunits may have appeared first in the nervous system. Moreover, we suggest that the alpha 1 subunits in the muscle system originated from the common ancestor of alpha 2, alpha 3, alpha 4, alpha 5, alpha 6, and beta 3 in the nervous system, whereas the beta 1, gamma, delta, and epsilon subunits in the muscle system shared a common ancestor with the beta 2 and beta 4 subunits in the nervous system. Using the ratio (f) of the number of nonsynonymous substitutions to that of synonymous substitutions, we predicted the functional importance of subunits. We found that the alpha 1 and alpha 7 subunits had the lowest f values in the muscle and nervous systems, respectively, indicating that very strong functional constraints work on these subunits. This is consistent with the fact that the alpha 1 subunit has sites binding to the ligand, and the alpha 7-containing receptor regulates the release of the transmitter. Moreover, the window analysis of the f values showed that strong functional constraints work on the so-called M2 region in all five types of muscle subunits. Thus, the window analysis of the f values is useful for evaluating the degree of functional constraints in not only the entire gene region, but also the within-gene subregion.   相似文献   

12.
The rab GDP-dissociation inhibitor (rab GDI) proteins are involved in the regulation of vesicle-mediated cellular transport. We isolated the amphioxus rab GDI gene, analyzed its expression during amphioxus development, and performed a phylogenetic analysis of the rab GDI family. In contrast to the two major rab GDI forms in mammals, the alpha and beta forms, there is only one rab GDI isoform in amphioxus. Our analysis indicates that the occurrence of the alpha and beta forms of rab GDI preceded the divergence of lineages leading to birds and mammals, and that the amphioxus rab GDI may have evolved directly from the common ancestor of both forms. While the mammalian rab GDI beta-genes are ubiquitously expressed, the rab GDI alpha genes are predominantly expressed in neural tissues. The expression analysis of the amphioxus rab GDI gene shows predominantly neural expression similar to that of the mammalian rab GDI alpha form, suggesting that the ancestral expression pattern of chordate rab GDI was neural. In addition, the chicken rab GDI beta-like gene also shows neural-specific expression, which indicates that the neural expression was retained in both early postduplication alpha and beta isoforms and that a novel function associated with ubiquitous expression may have evolved uniquely in mammals. These results reveal a likely scenario of functional divergence of the rab GDI genes after duplication of the ancestral gene. A similar pattern of evolution, in which one of the duplicated genes retained a role similar to that of the ancestral one while other genes were recruited into novel roles, was also observed in the analysis of chordate Otx and hedgehog genes. In the rab GDI, hedgehog, and Otx gene families, the gene retaining the ancestral role shows a lower rate of sequence evolution than its counterpart, which was recruited for a novel function.  相似文献   

13.
We determined four nucleotide sequences of the hominoid immunoglobulin alpha (C alpha) genes (chimpanzee C alpha 2, gorilla C alpha 2, and gibbon C alpha 1 and C alpha 2 genes), which made possible the examination of gene conversions in all hominoid C alpha genes. The following three methods were used to detect gene conversions: 1) phenetic tree construction; 2) detection of a DNA segment with extremely low variability between duplicated C alpha genes; and 3) a site by site search of shared nucleotide changes between duplicated C alpha genes. Results obtained from method 1 indicated a concerted evolution of the duplicated C alpha genes in the human, chimpanzee, gorilla, and gibbon lineages, while results obtained from method 2 suggested gene conversions in the human, gorilla, and gibbon C alpha genes. With method 3 we identified clusters of shared nucleotide changes between duplicated C alpha genes in human, chimpanzee, gorilla, and gibbon lineages, and in their hypothetical ancestors. In the present study converted regions were identified over the entire C alpha gene region excluding a few sites in the coding region which have escaped from gene conversion. This indicates that gene conversion is a general phenomenon in evolution, that can be clearly observed in non-functional regions.  相似文献   

14.
The globin family of genes and proteins has been a recurrent object of study for many decades. This interest has generated a vast amount of knowledge. However it has also created an inconsistent and confusing nomenclature, due to the lack of a systematic approach to naming genes and failure to reflect the phylogenetic relationships among genes of the gene family. To alleviate the problems with the existing system, here we propose a standardized nomenclature for the alpha and beta globin family of genes, based on a phylogenetic analysis of vertebrate alpha and beta globins, and following the Guidelines for Human Gene Nomenclature.  相似文献   

15.
16.
Structure and function of heterotrimeric G proteins in plants   总被引:12,自引:0,他引:12  
Heterotrimeric G proteins are mediators that transmit the external signals via receptor molecules to effector molecules. The G proteins consist of three different subunits: alpha, beta, and gamma subunits. The cDNAs or genes for all the alpha, beta, and gamma subunits have been isolated from many plant species, which has contributed to great progress in the study of the structure and function of the G proteins in plants. In addition, rice plants lacking the alpha subunit were generated by the antisense method and a rice mutant, Daikoku d1, was found to have mutation in the alpha-subunit gene. Both plants show abnormal morphology such as dwarfism, dark green leaf, and small round seed. The findings revealed that the G proteins are functional molecules regulating some body plans in plants. There is evidence that the plant G proteins participate at least in signaling of gibberellin at low concentrations. In this review, we summarize the currently known information on the structure of plant heterotrimeric G proteins and discuss the possible functions of the G proteins in plants.  相似文献   

17.
The nicotinic acetylcholine receptor of skeletal muscle (CHRN in man, Acr in mouse) is a transmembrane protein composed of four different subunits (alpha, beta, gamma, and delta) assembled into the pentamer alpha 2 beta gamma delta. These subunits are encoded by separate genes which derive from a common ancestral gene by duplication. We have used a murine full-length 1,900-bp-long cDNA encoding the gamma subunit subcloned into M 13 (clone gamma 18) to prepare single-stranded probes for hybridization to EcoRI-digested DNA from a panel of human x rodent somatic cell hybrids. Using conditions of low stringency to favor cross-species hybridization, and prehybridization with rodent DNA to prevent rodent background, we detected a single major human band of 30-40 kb. The pattern of segregation of this 30-40 kb band correlated with the segregation of human chromosome 2 within the panel and the presence of a chromosomal translocation in the distal part of the long arm of this t(X;2)(p22;q32.1) chromosome allowing the localization of the gamma subunit gene (CHRNG) to 2q32----qter. The human genes encoding the gamma and delta subunits have been shown to be contained in an EcoRI restriction fragment of approximately 20 kb (Shibahara et al., 1985). Consequently, this study also maps the delta subunit gene (CHRND) to human chromosome 2q32.1----qter. In the mouse, the Acrd and Acrg genes have been shown to be linked to Idh-1, Mylf (IDH1 and MYL1 in humans, respectively) and to the gene encoding villin on chromosome 1. Interestingly, we have recently localized the human MYL1 gene to the same chromosomal fragment of human chromosome 2. These results clearly demonstrate a region of chromosomal homoeology between mouse chromosome 1 and human chromosome 2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号