首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desferrioxamine is an iron-chelating agent used in the treatment of iron overload. It is a powerful inhibitor of iron-dependent radical reactions. The effect of desferrioxamine of prostaglandin (PG) synthesis and metabolism in rabbit gastric antral mucosal slices has been examined. Desferrioxamine significantly enhanced the production of PGE2 and PGF2 alpha. The formation of 13,14-dihydro-15-keto PGE2 and 13,14-dihydro-15-keto PGF2 alpha was also increased slightly by desferrioxamine. The addition of Fe3+ or Al3+ blocked the stimulatory action of desferrioxamine on PGE2 and PGF2 alpha production. Desferrioxamine appears to be stimulating the activity of PG cyclooxygenase through the removal of endogenous antral mucosal iron. These results suggest that desferrioxamine has the potential to increase the PG levels in gastric mucosa by primarily stimulating PG biosynthesis. The possibility that desferrioxamine may be of therapeutic value in the treatment of ischemic injury in the stomach is discussed.  相似文献   

2.
Regulation of prostaglandin production in cultured gastric mucosal cells   总被引:3,自引:0,他引:3  
The aims of this study were to investigate whether exogenous prostaglandin modulates prostaglandin biosynthesis by cultured gastric mucosal cells, and to clarify the role of cyclic nucleotides in the possible modulation of prostaglandin production. After pretreatment for 30 min with buffer alone (control) or 1 to 100ng/ml PGE2, cells were incubated with 4 uM arachidonic acid for 30 min. Pretreatments with greater than 5ng/ml PGE2 inhibited arachidonate-induced PGE2 and PGI2 production in a dose-dependent fashion, as compared with control, with inhibition by 64 +/- 8% and 75 +/- 4% respectively, at 100ng/ml PGE2. PGE2, at 100ng/ml, significantly increased intracellular cAMP accumulation, but pretreatment with dibutyryl cAMP (0.01-mM) did not alter the amounts of arachidonate-induced PGE2 production. Furthermore, while greater than 10ng/ml PGE2 increased cGMP production dose-dependently, preincubation with dibutyryl cGMP (0.001-0.1mM) also failed to affect PGE2 synthesis significantly. In addition, pretreatment with isobutyl-methyl-xanthine, while increasing accumulation of cellular cyclic nucleotides, did not significantly change PGE2 production. Calcium ionophore A23187-induced PGE2 production was also inhibited by pretreatment with PGE2. These results indicate that exogenous PG inhibits subsequent arachidonate or A23187-induced PG biosynthesis in rat gastric mucosal cells, and suggest the possibility that PG regulates its own biosynthesis via feedback inhibition independent of cyclic nucleotides in these cells.  相似文献   

3.
We examined the gastric ulcerogenic property of selective COX-1 and/or COX-2 inhibitors in rats, and investigated whether COX-1 inhibition is by itself sufficient for induction of gastric damage. Animals fasted for 18 h were given various COX inhibitors p.o., either alone or in combination, and they were killed 8 h later. The nonselective COX inhibitors such as indomethacin, naproxen and dicrofenac inhibited PG production, increased gastric motility, and provoked severe gastric lesions. In contrast, the selective COX-2 inhibitor rofecoxib did not induce any damage in the stomach, with no effect on the mucosal PGE(2) contents and gastric motility. Likewise, the selective COX-1 inhibitor SC-560 also did not cause gastric damage, despite causing a significant decrease in PGE(2) contents. The combined administration of SC-560 and rofecoxib, however, provoked gross damage in the gastric mucosa, in a dose-dependent manner. SC-560 also caused a marked gastric hypermotility, whereas rofecoxib had no effect on basal gastric motor activity. On the other hand, the COX-2 mRNA was expressed in the stomach after administration of SC-560, while the normal gastric mucosa expressed only COX-1 mRNA but not COX-2 mRNA. These results suggest that the gastric ulcerogenic property of conventional NSAIDs is not accounted for solely by COX-1 inhibition and requires the inhibition of both COX-1 and COX-2. The inhibition of COX-1 up-regulates the COX-2 expression, and this may counteract the deleterious influences, such as gastric hypermotility and the subsequent events, due to a PG deficiency caused by COX-1 inhibition.  相似文献   

4.
Nonsteroidal anti-inflammatory drugs (NSAID) are well known to induce gastric mucosal damage including bleeding, ulceration and perforation in humans and animals too. These effects are related with the inhibition of the enzyme cyclooxygenase, which is the main established mechanism of action for these drugs. Fasted rats were given piroxicam, preferential COX-1 inhibitor (10-20 mg/kg) or meloxicam, preferential COX-2 inhibitor (7.5-15 mg/kg) orally. Six or nine hours (h) later, respectively, the stomach was excised, the severity of the damage assessed and myeloperoxidase (MPO) activity measured, as well as prostaglandin PGE(2) content. Furthermore, in order to assess the effects of these oxicams over previously damaged gastric mucosa, 1 ml of 0.6 N HCl was administered p.o. followed, 1 h after, of the correspondent dose of each NSAID, and the same parameters were determined. Oral administration of both drugs dose-dependently caused acute gastric haemorrhage erosions. Myeloperoxidase activity was significantly increased by piroxicam administration. In addition, PGE(2) content was significantly reduced. The association between the administration of the acid and NSAID caused a worsening of the damage and, while myeloperoxidase activity did not modify by both piroxicam and meloxicam, PGE(2) levels were reduced. These results suggest that the PG derived from both COX-1 and COX-2 pathway plays a beneficial role in the gastroprotection, and thus caution should be exercise in the clinical use of preferential COX-2 inhibitors.  相似文献   

5.
We investigated the effects of calcium channel blockers on generation of prostaglandin (PG) E2 and 6-keto PGF1 alpha by gastric mucosal surface epithelium. Surface epithelial cells (SEC) isolated from rat gastric mucosa were incubated with either verapamil (1 or 10 micrograms/ml), diltiazem (2.5 or 25 micrograms/ml) or nifedipine (2.5 or 25 micrograms/ml) for 30 min at 37 degrees C in calcium containing or calcium-free medium. Verapamil (both doses) significantly increased PGE2 and 6-keto PGF1 alpha generation by the surface epithelial cells but only in calcium containing medium. Diltiazem did not affect PG generation in calcium containing nor calcium-free medium. Nifedipine 25 micrograms/ml decreased PGE2 but increased 6-keto PGF1 alpha generation. The inhibitory effect of nifedipine on PGE2 generation was abolished in calcium-free medium, while the calmodulin antagonist did not affect verapamil-induced increase in PG generation.  相似文献   

6.
Prostaglandins and prostaglandin metabolites in human gastric juice   总被引:2,自引:0,他引:2  
Human gastric juice contains higher concentrations of PG metabolites than of unmetabolized PG indicating that local metabolism might play a role in limiting the biological activity of PG in gastric mucosa and has to be considered when investigating endogenous gastric PG. A major fraction of the 15-keto-13,14-dihydro-PGE2 (KH2PGE2) formed in gastric mucosa and released into the gastric lumen seems to be rapidly dehydrated to a compound co-chromatographing with KH2PGA2, while the amounts of the bicyclic degradation product 11-deoxy-13,14-dihydro-15-keto-11,16-cyclo-PGE2 (11-deoxy-KH2-cyclo-PGE2), as measured by radioimmunoassay, in freshly extracted gastric juice are negligible. Stimulation of secretion with pentagastrin does not influence significantly the concentrations of PG and PG metabolites in human gastric juice, but total output tends to increase parallel to the increase in secretion volume. Levels of immunoreactive 6-keto-PGF1 alpha in human gastric juice are much lower than those of PGE2. Since human gastric mucosa synthesizes conciderable amounts of PGI2 and 6-keto-PGF1 alpha in vitro, the low levels of 6-keto-PGF1 alpha in gastric juice might indicate that PGI2 formed by gastric mucosa in vivo is, like PGE2 and PGF2 alpha, rapidly metabolized and/or removed preferentially via the blood stream.  相似文献   

7.
This study was designed to clarify effects of ageing on human gastric mucosal prostaglandin (PG) contents. Forty examinees were divided into 5 age groups of 8 persons each, as follows: age under 40, age 40-49, age 50-59, age 60-69, and age over 70. PG contents in human gastric mucosa were measured by microcolumn high performance liquid chromatography (HPLC) with helium/cadmium laser induced fluorescence detection using biopsy samples obtained by endoscopy. The contents of 6-keto-PGF1 alpha, PGF2 alpha, PGE2, and PGD2 in the under 40 group were 638 +/- 39, 97 +/- 16, 468 +/- 68, 497 +/- 86 (pg/mg tissue), respectively. No significant differences in PG contents among groups aged under 70 were observed. In contrast, significantly low PG contents in the over 70 group were observed, i.e., the contents of 6-keto-PGF1 alpha, PGF2 alpha, PGE2, and PGD2 were 311 +/- 58, 36 +/- 8, 196 +/- 48, 171 +/- 40, respectively, and their contents were significantly lower than those in other age groups. In conclusion, gastric mucosal PG contents decrease significantly in over 70 years-old and this might be a contributing factor in the pathogenesis of gastric ulcers in elderly people.  相似文献   

8.
German Giant rabbits successfully immunized against prostaglandin (PG) E2 as shown by a rise in antibody titers developed gastric mucosal lesions. Enzymatically dispersed gastric mucosal cells of these animals had a significantly enhanced production of PG E2 and PG I2 as measured by specific radioimmunoassays. This may be explained by an increased supply with endogenous arachidonic acid (as indicated by an enhanced phospholipase A2/LAT ratio) and by a higher activity of the subsequent PG forming enzymes (as indicated by a more effective stimulation of PG production by exogenous arachidonic acid). Gastric mucosal plasma membranes of immunized rabbits had significantly higher PG E2 binding capacity (108 +/- 9 fmol/mg protein) than those of nonimmunized rabbits (72 +/- 5 fmol/mg protein). The ligand affinity was not affected by immunization. Neither histamine-stimulated 14C-amino-pyrine uptake of isolated parietal cells as a marker for acid production nor its inhibition by PG E2 were influenced by receptor up-regulation. The increased eicosanoid release can be regarded as an endogenous defense mechanism against increased mucosal vulnerability caused by PG E2 scavenging. The potential role of PG E2 receptor up-regulation in support of this process remains to be established.  相似文献   

9.
We have observed that the contents of prostaglandin (PG) D2 and 6-keto-PGF1 alpha were five times higher than those of PGE2 and PGF2 alpha in rat gastric mucosa. In order to elucidate the role of PGs in the function of gastric mucosa, we studied the effect of hypoxia on the levels of PGs in relation to the degree of gastric mucosal lesions. 6-Keto-PGF1 alpha levels were significantly decreased only by severe and long-term hypoxia (10% O2, 18 hours) when severe ulcerative lesions were observed. PGE2 levels were significantly decreased even by mild and short-term hypoxia (13% O2, 4 hours) when slight ulcerative lesions were observed. PGF2 alpha and PGD2 levels were significantly decreased by mild and short-term hypoxia; however, there was no significant difference from the control group under severe and long-term hypoxia. These results suggest that each of the PGs plays a different role in the pathogenesis of acute gastric mucosal lesions induced by hypoxia.  相似文献   

10.
In this study we present evidence to suggest that gastroduodenal mucosal defects may occur in gastric fistula dogs actively immunized with PGE2-thyroglobulin conjugate. One of four PGE2-immunized dogs developed a chronic pyloroduodenal ulcer with penetration into the pancreas and the other three had endoscopic evidence of gastric and/or duodenal erosions. In contrast, no gastroduodenal mucosal defects were seen in control dogs immunized with thyroglobulin alone. Occurrence of gastroduodenal ulcers or erosions was temporally related to formation of specific antibody to PGE2 suggesting that PGE2 antibody may be responsible for lesion formation. An increase in gastric acid secretion was not observed in PGE2-immunized dogs. Thus, it is likely that mucosal defects occur as a result of an impairment of PGE2-mediated mucosal defense mechanisms. Since gastroduodenal lesions can be visualized by endoscopy, the dog may prove to be useful in studying the role of endogenous PG in ulcer diseases.  相似文献   

11.
It has been observed earlier that gastric cytoprotection produced by PGI2, beta-carotene, small doses of atropine or cimetidine has failed in surgically vagotomized rats. This phenomenon may be in connection with endogenous prostaglandins (PGs) and glutathione (GSH) level of the gastric mucosa. The aims of the study were to evaluate the effect of vagus nerve on the gastric mucosal 6-keto-PGF1 alpha, PGE2 and glutathione after intragastric 96% ethanol (ETOH) treatment. The observations were carried out on CFY rats. The gastric mucosal damage was produced by intragastric administration of 1 ml 96% ETOH. Acute bilateral surgical vagotomy (ASV) was carried out 30 min prior to ETOH application. The animals were sacrificed 1, 5, 15 or 60 min after ETOH installation. The number and the severity of gastric mucosal lesions were noted and 6-keto-PGF1 alpha, PGE2 an GSH contents of gastric mucosa were measured. It has been found that: 1. the number and the severity of gastric mucosal lesions were increased after ASV compared to those with intact vagal nerve, 2. 96% ETOH treatment increased both the gastric mucosal PGs and GSH levels, 3. 6-keto-PGF1 alpha peaked at 5 min PGE2 and GSH peaked at 15 min after ETOH treatment, 4. ASV decreased the gastric mucosal PGs content and delayed the peaks of PGE2 and GSH. It has been concluded that the decreased content of PGs and the delayed GSH increase may play a pathological role in the failure of gastric cytoprotection of rats after ASV.  相似文献   

12.
We demonstrated that prostaglandin (PG) E2 aggravates gastric mucosal injury caused by histamine in rats, and investigated using various EP agonists which EP receptor subtype is involved in this phenomenon. Rats were used after 18 hr fasting. Histamine (80 mg/kg) dissolved in 10% gelatin, was given s.c., either alone or in combination with i.v. administration of PGE2 or various EP agonists such as 17-phenyl PGE2 (EP1), butaprost (EP2), sulprostone (EP1/EP3), ONO-NT012 (EP3) and ONO-AE1-329 (EP4). The animals were killed 4 hr later, and the mucosa was examined for lesions. The mucosal permeability was determined using Evans blue (1%). Histamine alone induced few lesions in the gastric mucosa within 4 hr. PGE2 dose-dependently worsened the lesions induced by histamine, the response being inhibited by tripelennamine but not cimetidine. The effect of PGE2 was mimicked by 17-phenyl PGE2 and sulprostone, but not other EP agonists, including EP2, EP3, and EP3/EP4 agonists. The mucosal vascular permeability was slightly increased by histamine, and this response was markedly enhanced by co-administration of 17-phenyl PGE2 as well as PGE2. The mucosal ulcerogenic and vascular permeability responses induced by histamine plus PGE2 were both suppressed by pretreatment with ONO-AE829, the EP1 antagonist. These results suggest that PGE2 aggravates histamine-induced gastric mucosal injury in rats. This action of PGE2 is mediated by EP1 receptors and functionally associated with potentiation of the increased vascular permeability caused by histamine through stimulation of H1-receptors.  相似文献   

13.
The effect of prolonged administration of an antiulcer drug, sofalcone, on the physicochemical properties of gastric mucus was investigated. The experiments were conducted with groups of rats receiving twice daily for three consecutive days a dose of 100 mg/kg sofalcone, while the control group received daily doses of vehicle. The rats were sacrificed 16 h after the last dose and gastric mucosa subjected to physicochemical measurements. The results revealed that sofalcone evoked a 23% increase in mucus gel dimension, while sulfo- and sialomucins content of the gel increased by 54 and 25%, respectively. These changes were accompanied by a 16% increase in mucus H+ retardation capacity, 2-fold increase in viscosity, and a 39% increase in the gel hydrophobicity. The mucus elaborated in the presence of sofalcone contained 67% more covalently bound fatty acids, exhibited 10% lower content of protein, 30% higher content of carbohydrate, and 18% higher content of lipids. The mucus of the sofalcone group also showed an increase in the proportion of the high molecular weight mucus glycoprotein form, which in the control group accounted for about 30% of gel mucin, while its content in mucus gel of animals receiving sofalcone reached the value of 50%. The results indicate that sofalcone enhances the protective qualities of mucus component of gastric mucosal barrier.  相似文献   

14.
Sofalcone, 2′-carboxymethoxy-4,4-bis(3-methyl-2-butenyloxy)chalcone, is an anti-ulcer agent that is classified as a gastric mucosa protective agent. Recent studies indicate heat shock proteins such as HSP32, also known as heme-oxygenase-1(HO-1), play important roles in protecting gastrointestinal tissues from several stresses. We have previously reported that sofalcone increases the expression of HO-1 in adipocytes and pre-adipocytes, although the effect of sofalcone on HO-1 induction in gastrointestinal tissues is not clear. In the current study, we investigated the effects of sofalcone on the expression of HO-1 and its functional role in rat gastric epithelial (RGM-1) cells. We found that sofalcone increased HO-1 expression in RGM-1 cells in both time- and concentration-dependent manners. The HO-1 induction was associated with the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in RGM-1 cells. We also observed that sofalcone increased vascular endothelial growth factor (VEGF) production in the culture medium. Treatment of RGM-1 cells with an HO-1 inhibitor (tin-protoporphyrin), or HO-1 siRNA inhibited sofalcone-induced VEGF production, suggesting that the effect of sofalcone on VEGF expression is mediated by the HO-1 pathway. These results suggest that the gastroprotective effects of sofalcone are partly exerted via Nrf2-HO-1 activation followed by VEGF production.  相似文献   

15.
Filling of the gastric lumen of rats with 1.0 M NaCl solution (5 ml) for 10 min under urethane anesthesia caused an increase in the gastric fluid concentrations of prostaglandin (PG) E2, 13,14-dihydro-15-keto-PGE2 and 6-keto-PGF1 alpha as determined by radioimmunoassay. PGE2 was the major PG generated. The levels of PGE2 in the gastric fluid were increased dose-dependently after filling the lumen with 0.3, 0.5, 0.7 or 1.0 M NaCl solutions. The pH of the gastric fluid increased similarly after 0.5 to 1.0 M NaCl solutions. Indomethacin (10 mg/kg, i.p.) suppressed the PGE2 increase caused by 1.0 M NaCl solution, but did not prevent the increase of the pH of the gastric fluid induced by intragastric 1.0 M NaCl. Infusion of tetragastrin (62.5 micrograms/kg/hr, i.v., for 10 min) caused a marked increase of acid secretion without modifying intragastric concentration of PGE2. The acid secretion due to tetragastrin was completely inhibited after intragastric administration of 1.0 M NaCl solution, while indomethacin restored the tetragastrin-induced acid secretion, with prevention of a rise of intragastric PGE2 levels. These observations suggest that 1.0 M NaCl solutions suppress basal intragastric acid through a mechanism which is independent of prostaglandins. In contrast, the suppression of tetragastrin-induced acid secretion by intragastric 1.0 M NaCl solution appears to be mediated through a release of prostaglandins.  相似文献   

16.
P Tao  D E Wilson 《Prostaglandins》1984,28(3):353-365
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may be related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

17.
20-Isopropylidene-PGE1 (Isop-PGE1) was about 10 times more potent than PGE1 in inhibition of thrombin-induced aggregation of rabbit washed platelets. Likewise, 20-isopropylidene-17(R)-methyl-carbacyclin (CS-570), a stable PGI2 analogue, was more potent than carbacyclin in the anti-aggregatory activity. In order to define the platelet-prostaglandin interactions, a binding assay was done using platelet membranes with [3H]-PGE1 as a radioligand. Isop-PGE1 (IC50 = 0.18 microM) bound to the PG receptors more potently than PGE1 (IC50 = 2.1 microM). CS-570 (IC50 = 0.39 microM) was more potent than carbacyclin (IC50 = 1.9 microM). These indicate that introduction of an isopropylidene group to the carbon 20 of PGs increases the binding ability to the receptors. These PGE1 and PGI2 analogues activated platelet membrane adenyl cyclase and increased intracellular cAMP levels with the same potency series obtained in the binding experiments. All these results suggest that the binding to the receptors by these PGs is coupled to the activation of adenyl cyclase, followed by the increase in cAMP levels in platelets and the inhibition of platelet aggregation. Thus, the increased anti-aggregatory activity of 20-isop-PGs may be explained by their increased affinity for the PG receptors and stimulation of adenyl cyclase. 15-Epimeric-20-isopropylidene-PGE1 (15-Epi-isop-PGE1), which has an unnatural configuration of the 15-hydroxyl group, was much less potent than isop-PGE1 in the binding experiment and the other three investigations. This indicates that the configuration of the 15-hydroxyl group is important for the binding to the PG receptors and the consequent activities in platelets.  相似文献   

18.
We examined whether capsaicin-sensitive sensory neurons might be involved in the increase in the gastric tissue level of prostaglandins, thereby contributing to the reduction of water immersion restraint stress (WIR)-induced gastric mucosal injury in rats. Gastric tissue levels of calcitonin gene-related peptide (CGRP), 6-keto-PGF1alpha, and PGE2 were transiently increased 30 min after WIR. These increases were significantly inhibited by subcutaneous injection of capsazepine (CPZ), a vanilloid receptor antagonist, and by functional denervation of capsaicin-sensitive sensory neurons induced by the administration of high-dose capsaicin. The administration of capsaicin (orally) and CGRP (intravenously) significantly enhanced the WIR-induced increases in the gastric tissue level of prostaglandins 30 min after WIR, whereas CGRP-(8-37), a CGRP receptor antagonist, significantly inhibited them. Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS), and that with indomethacin inhibited the WIR-induced increases in gastric tissue levels of prostaglandins, whereas either pretreatment with aminoguanidine (AG), a selective inhibitor of the inducible form of NOS, or that with NS-398, a selective inhibitor of cyclooxygenase (COX)-2, did not affect them. CPZ, the functional denervation of capsaicin-sensitive sensory neurons, and CGRP-(8-37) significantly increased gastric MPO activity and exacerbated the WIR-induced gastric mucosal injury in rats subjected to 4-h WIR. The administration of capsaicin and CGRP significantly increased the gastric tissue levels of prostaglandins and inhibited both the WIR-induced increases in gastric MPO activity and gastric mucosal injury 8 h after WIR. These effects induced by capsaicin and CGRP were inhibited by pretreatment with L-NAME and indomethacin but not by pretreatment with AG and NS-398. These observations strongly suggest that capsaicin-sensitive sensory neurons might release CGRP, thereby increasing the gastric tissue levels of PGI2 and PGE2 by activating COX-1 through activation of the constitutive form of NOS in rats subjected to WIR. Such activation of capsaicin-sensitive sensory neurons might contribute to the reduction of WIR-induced gastric mucosal injury mainly by inhibiting neutrophil activation.  相似文献   

19.
20.
The effect of various factors upon prostaglandin (PG) production by the osteoblast was examined using osteoblast-rich populations of cells prepared from newborn rat calvaria. Bradykinin and serum, and to a lesser extent, thrombin, were all shown to stimulate PGE2 and 6-keto-PGF1 alpha (the hydration product of PGI2) secretion by the osteoblastic cells. Several inhibitors of prostanoid synthesis, dexamethasone, indomethacin, dazoxiben and nafazatrom, were tested for their effects on the calvarial cells. All inhibited PGE2 and PGI2 (the major arachidonic acid metabolites of these cells) production with half-maximal inhibition by all four substances occurring at approximately 10(-7) M. For dazoxiben and nafazatrom, this was in contrast to published results from experiments in vivo which have indicated that the compounds stimulated PGI2 production. Finally, since the osteoblast is responsive to bone-resorbing hormones, these were tested. Only epidermal growth factor (EGF) was shown to modify PG production. At early times EGF stimulated PGE2 release, however, the predominant effect of the growth factor was an inhibition of both PGE2 and PGI2 production by the osteoblastic cells. The present results suggest that the bone-resorbing hormones do not act to cause an increase in PG by the osteoblast and that any increase in PG production by these cells may be in response to vascular agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号