首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The binding of 125I-labeled human choriogonadotropin, formation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP), and synthesis of progesterone were examined in ovarian cells from immature rats. Collagenase dispersed ovarian cells were found to respond specifically to lutropin-like activity. The equilibrium dissociation constant (Kd) for the binding of 125I-labelled choriogonadotropin was 1.7 · 101?10 M. Progesterone synthesis was increased at least 40-fold and cyclic AMP formation 10-fold in response to maximum hormonal stimulation. The concentration of choriogonadotropin which stimulated progesterone synthesis maximally in Eagle's minimum essential medium ?0.1% gelatin (2 ng/ml), resulted in minimal (less than 30% of maximum) increases in cyclic AMP accumulation and hormone bindind. Similarly, binding of choriogonadotropin was not saturated at a hormone concentration (50 ng/ml) that stimulated maximal cyclic AMP formation. These results are consistent with the existence of receptor reserve in the ovarian cell. A marked shift in the dose vs. response relationship for progesterone synthesis occurred when fetal calf serum was used to supplemen Eagle's minimum essential medium, however. Under these experimental conditions, progesterone synthesis reached a maximum at a hormone concentration of the same order of magnitude as did cyclic AMP formation. It is concluded that the degree of spare receptor effect observed may depend not only on an absolute amount of excess receptor, but also on the readiness of the system to respond in a given fashion.  相似文献   

2.
The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4-5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50-2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose-response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The uptake and metabolism of cyclic [(3)H]AMP in ovarian cells was also studied in relation to steroidogenesis. When ovarian cells were incubated for 2h in the presence of increasing concentrations of cyclic [(3)H]AMP, the radioactivity associated with the cells increased almost linearly up to 250mum-cyclic [(3)H]AMP concentration in the incubation medium. The (3)H label in the cellular extract was recovered mainly in the forms ATP, ADP, AMP, adenosine and inosine, with cyclic AMP accounting for less than 1% of the total tissue radioactivity. Incubation of cyclic AMP in vitro with ovarian cells resulted in a rapid breakdown of the nucleotide in the medium. The degradation products in the medium have been identified as AMP, adenosine and inosine. The rapid degradation of cyclic AMP by phosphodiesterase(s) makes it difficult to correlate changes in cyclic AMP concentrations with steroidogenesis. These observations thus provide an explanation for the previously observed lack of cyclic AMP accumulation under conditions in which low doses of choriogonadotropin stimulated steroidogenesis without any detectable changes in cyclic AMP accumulation.  相似文献   

3.
The role of the cellular cytoskeletal system of microtubules and microfilaments on gonadotropin-stimulated progesterone production by isolated rat luteal cells has been investigated. Exposure of luteal cells to human choriogonadotropin resulted in a stimulation of cyclic AMP (4-7-fold) and progesterone (3-4-fold) responses.l Incubation of cells with the microfilament modifier cytochalasin B inhibited the gonadotropin-induced steroidogenesis in a dose- and time-dependent manner. The effect of cytochalasin B on basal production of steroid was less pronounced. Cytochalasin B also inhibited the accumulation of progesterone in response to lutropin, cholera enterotoxin, dibutyryl cyclic AMP and 8-bromo cyclic AMP. The inhibition of steroidogenesis by cytochalasin B was not due to (a) inhibition of 125I-labelled human choriogonadotropin binding to luteal cells, (b) inhibition of gonadotropin-stimulated cyclic AMP formation or (c) a general cytotoxic effect and/or inhibition of protein biosynthesis. Cytochalasin D, like cytochalasin B, inhibited gonadotropin- and 8-bromo cyclic AMP-stimulated steroidogenesis. Although cytochalasin B also blocked the transport of 3-O-methyl-glucose into luteal cells, cytochalasin D was without such an effect. Increasing glucose concentration in the medium, or using pyruvate as an alternative energy source, failed to reverse the inhibitory effect of cytochalasin B. The anti-microtubular agent colchicine failed to modulate synthesis and release of progesterone by luteal cells in response to human choriogonadotropin. These studies suggest that the cellular microfilaments may be involved in the regulation of gonadotropin-induced steroidogenesis. In contrast, microtubules appear to be not directly involved in this process.  相似文献   

4.
Regulation of cyclic AMP-dependent protein kinase, cyclic AMP-receptor activity and intracellular cyclic AMP concentrations by choriogonadotropin was studied in ovarian cells prepared from 26-day-old rats. A close correlation was observed between phospho-transferase activity and cyclic AMP-receptor activity in 12000g supernatant fractions from rat ovarian homogenate. The apparent activation constant (K(a)) and I(50) (concentration required to produce 50% inhibition) of different cyclic nucleotides for phosphotransferase and cyclic AMP receptor activities respectively were also determined. Cyclic AMP and 8-bromo cyclic AMP were most effective, giving K(a) values of 0.08 and 0.09mum and I(50) of 0.12 and 0.16mum respectively. Other nucleotides were also effective, but required higher concentrations to give a comparable effect. An increased concentration of cyclic AMP produced by choriogonadotropin (1mug/ml) treatment was accompanied by decreased cyclic AMP binding as early as 5min after hormone addition. Choriogonadotropin also stimulated the protein kinase activity ratio (-cyclic AMP/+cyclic AMP) under identical experimental conditions. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine potentiated the action of choriogonadotropin on the three parameters measured in a dose- and time-dependent manner. The maximal cyclic AMP-binding capacity, as determined by cyclic AMP-exchange assay, remained unchanged before and after hormone addition. The endogenously bound cyclic AMP was determined from the difference between the maximal binding capacity and the exogenously bound cyclic AMP. With different choriogonadotropin concentrations, a quantitative correlation was established between maximal binding capacity, exogenous binding and endogenous binding activities. Approx. 60% of total binding sites were endogenously occupied in untreated cells, and choriogonadotropin (1mug/ml) treatment fully saturated available binding sites with a parallel 10-fold increase in cellular cyclic AMP. The present results provide evidence for a probable intracellular compartmentalization of cyclic AMP in the ovarian cell, and suggest that in the unstimulated state all cyclic AMP present in the ovarian cell may not be available for protein kinase activation.  相似文献   

5.
Incubation of rat ovarian cell suspension with human choriogonadotropin (hCG) caused a marked enhancement of ornithine decarboxylase (EC 4.1.1.17) activity after a lag period of several hours. Even though ovarian ornithine decarboxylase could be induced in minimum essential medium by the hormone alone, supplementation of the medium with various sera greatly enhanced the stimulation of the enzyme activity. All the sera tested (human, fetal calf and horse) were able to stimulate ornithine decarboxylase activity even in the absence of hCG. Maximum stimulation of the enzyme activity by hCG and/or serum occurred in ovarian cell suspensions prepared from 30 to 33-day-old rats. There was a close correlation between the stimulation of ornithine decarboxylase activity and the accumulation fo cyclic AMP in response to the administration of the hormone (in the presence or absence of serum). However, while various sera alone markedly enhanced ovarian ornithine decarboxylase activity in vitro they, if anything, only marginally stimulated the accumulation of cyclic AMP and the secretion of progesterone in ovarian cells in the absence of gonadotropin. A similar dissociation of the stimulation of ornithine decarboxylase activity from the production of cyclic AMP and progesterone was likewise found when the ovarian cells were incubated in an enriched medium (M199) supplemented with albumin and lactalbumin hydrolysate in the absence of the hormone. Under these culture conditions ornithine decarboxylase activity was strikingly enhanced, greatly exceeding the stimulation obtained with various sera, while the accumulation of cyclic AMP and the secretion of progesterone remained virtually unchanged. Specific inhibition (up to 90%) of gonadotropin-induced ornithine decarboxylase activity by difluoromethyl ornithine or 1,3-diamino-2-propanol had little effect on the ability of the ovarian cells to respond to the hormone with increasing production of cyclic AMP and progesterone. While showing that rat ovarian ornithine decarboxylase can be induced in vitro by choriogonadotropin or various sera, our results indicate that the activation of the enzyme involves at least two different mechanisms: (i) One (in response to gonadotropin) involving a prior stimulation of cyclic AMP production, and (ii) another (in response to serum) that is not associated with increases in the accumulation of the cyclic nucleotide.  相似文献   

6.
A system to study lutropin-induced desensitization of tumour Leydig cells in vitro has been investigated. Tumour Leydig cells were purified on a Percoll gradient and then incubated for 30 min with lutropin (0-1000ng/ml). The cells were then washed and incubated in suspension media at 32 degrees C. 125I-labelled human choriogonadotropin binding and basal and lutropin-stimulated cyclic AMP production were determined at various times. Initially the cells showed a dose-dependent decrease in human choriogonadotropin binding (1.18 and 0.13fmol/10(6) cells respectively) followed by an increase at 1 h (2.32 and 0.87fmol/10(6) cells respectively). Human choriogonadotropin binding remained elevated in the cells pre-incubated without lutropin, whereas the cells pre-incubated with lutropin showed a dose-dependent decrease over the next 10 h (2.20-0.18fmol/10(6) cells respectively). Basal production of cyclic AMP initially reflected the pre-incubation conditions (1.17-21.19ng/10(6) cells per h for 0-1000ng of lutropin/ml respectively). However, by 1 h there was a marked rise in basal cyclic AMP production which returned to the initial lower values by 4 h. At all time intervals studied, lutropin-induced cyclic AMP production showed a decrease that was proportional to lutropin concentration in the pre-incubated media. The decreases in human choriogonadotropin binding produced by pre-incubations with lutropin (100ng/ml) was partially inhibited by the presence of cycloheximide in the pre-incubation media and totally prevented by the continuous presence of cycloheximide. These results demonstrate that desensitization of tumour Leydig cells occurs after exposure to lutropin in vitro. This desensitization involves both a loss of plasma membrane receptors for lutropin and lutropin-stimulated adenylate cyclase. These events can be prevented by cycloheximide and are therefore probably dependent on protein synthesis.  相似文献   

7.
During the gonadotropin stimulated differentiation of ovarian follicles into corpora lutea, the concentrations of total cyclic AMP and protein bound cyclic AMP increased only marginally. In contrast, there was a 10 fold increase in progesterone production. After acute stimulation of luteinized ovaries with choriogonadotropin total cyclic AMP levels increase more than 6 times while bound cyclic AMP and plasma progesterone rose by 80 and 60% respectively. Our results question the role of cyclic AMP in the basal production of progesterone by the ovary, and suggest a relationship between bound cyclic AMP and progesterone synthesis only exists after acute gonadotropin stimulation.  相似文献   

8.
Purified rat Leydig tumour cells were pretreated with lutropin and the effect on the subsequent response to lutropin was determined. Maximal cyclic AMP production was achieved with the same concentration of lutropin in control and lutropin-pretreated cells; however, the maximum stimulated level in pretreated cells was only 30% of controls. The sensitivity to lutropin was decreased in lutropin-pretreated cells [ED(50) (dose that produces a response that is 50% of the maximum response) 60+/-5.7ng/ml and 8+/-1.8ng/ml (mean+/-s.d., n=3) for controls], as was the rate of maximal cyclic AMP production (0.58, compared with 1.89pmol/10(6) cells per min for controls). However, cholera-toxin-stimulated cyclic AMP production was not decreased by lutropin pretreatment, and a potentiation was seen at all time points studied (up to 6h). Pre-incubation with lutropin caused a decrease in specific (125)I-labelled human choriogonadotropin binding; however, this decrease was abolished if the cells were washed under acidic conditions (pH3.0 for 2min at 4 degrees C), indicating that occupation but not loss of the lutropin receptors had taken place. The effect of pretreating the cells with lutropin on adenylate cyclase activity in purified plasma membranes was also investigated. In plasma membranes from control cells both guanosine 5'-[beta,gamma-imido]triphosphate [p(NH)ppG] plus lutropin and NaF plus lutropin caused a 50-60-fold linear increase in cyclic AMP production over 40min compared with 15-fold with p(NH)ppG and 6-fold with lutropin alone. In plasma membranes isolated from lutropin-treated cells the NaF-plus-lutropin- and the p(NH)ppG-stimulated cyclic AMP production rates were unchanged but no effect of lutropin could be demonstrated with or without added p(NH)ppG. In contrast the plasma membranes from dibutyryl cyclic AMP-treated cells had similar cyclic AMP production rates to control cells with all stimulants studied. The present evidence obtained from studies both with intact cells and with isolated plasma membranes indicates that the initial lutropin-induced desensitization of the rat Leydig tumour cell is due to a lesion in the hormone-receptor coupling to the guanine nucleotide regulatory protein. This process is apparently not mediated by cyclic AMP.  相似文献   

9.
10.
1. We investigated the production of steroid hormones by the ovaries of the developing embryonic chick under conditions of organ culture. Radioimmunoassay techniques were used to measure the amount of steroid hormone released into the culture medium. Stimulation of the production of steroid hormones by choriogonadotropin from the urine of pregnant human was dose-dependent. Oestradio and testosterone production was optimal when 20 i.u. of gonadotropic hormone was present in the culture medium 2. During development, both left and right ovaries responded to gonadotropic hormone stimulation with a 2.5-3-fold increase in oestrogen production. However, the right ovary was twice as efficient in testosterone production as the left one. The presence of dibutyryl cyclic AMP in the culture medium of the embryonic ovaries mimicked the effect of the gonadotropic hormone. 3. The human choriogonadotropic hormone stimulated cyclic AMP production in the embryonic ovarian tissue. Thyrotropin, growth hormone and insulin had no stimulating effect. 3-Isobutyl-1-methylxanthine potentiated the gonadotropic hormone effect by increasing the concentration of cyclic AMP in the ovarian tissue. 4. The amount of cyclic AMP synthesized in the embryonic ovary was gradually increased (from 1.2 to 6.5 pmol/mg of tissue) when incubated with increasing doses of human choriogonadotropic hormone in vitro. The newly synthesized cyclic AMP reached the maximum concnentration after 30 min of incubation, then decreased at 2 h of incubation. A portion of the newly synthesized cyclic AMP was released into the culture medium. 5. At various developmental stages, both left and right embryonic-chick ovaries responded to stimulation by gonadotropic hormone with an increase in cyclic AMP production. The cyclic AMP concentration in the right ovary was 80% higher than that in the corresponding left ovary.  相似文献   

11.
We have shown previously that corpus luteum cells isolated from the superovulated ovaries of rats treated with 4-amino-pyrazolo[3,4-d]pyrimidine constitute a suitable experimental system by which to investigate the mechanism in which plasma high-density lipoprotein (HDL) plays a role in luteal cellular progesterone synthesis. In the present study, the rate of luteal cellular progesterone synthesis was shown to be stimulated by 125I-labelled HDL up to about 70% of the rate achieved in the presence of native HDL. The concentration of HDL needed for half-maximal stimulation of progesterone synthesis in the presence of lutropin was not significantly different irrespective of whether radioiodinated HDL or unlabelled HDL was used. Experimental conditions for studying the binding of 125I-labelled HDL to isolated luteal cells have been defined and cellular binding affinity and binding capacity have been measured. Exposure of the luteal cells to pronase virtually abolished their capacity to bind 125I-HDL and made them unable to respond to added HDL by increasing their rate of progesterone synthesis in the presence of lutropin. Control experiments showed this effect of pronase on cellular progesterone synthesis not to be due to destruction of cellular lutropin receptors, nor to general cellular damage. This evidence supports the view that luteal cellular binding of HDL is part of the mechanism by which HDL acts in luteal progesterone synthesis. Cellular binding capacity and affinity for 125I-labelled HDL were the same irrespective of whether or not lutropin was present during incubation. Furthermore, the binding capacity and affinity of cells from the ovaries of rats not treated with 4-amino-pyrazolo[3,4-d]pyrimidine were the same as in luteal cells isolated from rats that had been treated.  相似文献   

12.
Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate (cyclic AMP) formation and testosterone synthesis were studied in collagenase-dispersed interstitial cells from the adult rat testis. Binding of 125I-human chorionic gonadotropin (hCG) by isolated Leydig cells was of high affinity (Ka = 10(10) M-1) and low capacity, equivalent to approximately 6000 sites/cell. The binding data were consistent with the presence of a single order of receptors, with no interaction between binding sites. Stimulation of testosterone synthesis by increasing concentrations of hCG was completely dissociated from changes in cyclic AMP formation, and maximum activation of steroidogenesis was induced by hCG concentrations which had no effect upon cyclic AMP production. Kinetic analysis of gonadotropin-induced responses in dispersed Leydig cells also showed a marked dissociation between steroidogenesis and cyclic nucleotide formation. Low concentrations of hCG caused maximum stimulation of testosterone production which was not accompanied by a rise in cyclic AMP formation at any time after addition of gonadotropin. Higher concentrations of hCG caused marked elevations of cyclic AMP at progressively earlier time intervals, but did not alter the 20 to 30 min lag period required for induction of testosterone synthesis. These observations indicated that occupancy of gonadotropin receptors occurs over a much wider range of hCG concentration than that required for maximum steroidogenesis.  相似文献   

13.
Intact rat erythrocytes and reticulocytes have been studied in relation to their concentration of beta-adrenergic receptors and their responsiveness to beta-adrenergic catecholamines. Characteristics of the beta-receptor, as determined by binding of 125I-labelled hydroxybenzylpindolol, were compared among control erythrocytes and reticulocytes. The dissociation constant (Kd = 0.1--0.2 nM), association and dissociation kinetics, and stereospecificity for (--)-isomers of agonists and antagonists were similar in both cell types. The reticulocyte population contained four times more receptors per cell than the control erythrocytes. However, reticulocytes were 25 times more responsive than control cells to isoproterenol, as measured by the formation of cyclic AMP. After peak reticulocytosis, cells rapidly lost 95% of their maximum hormone responsiveness, but beta-receptors declined much more slowly. The 4-fold decrease in beta-receptors was associated with a 4-fold decrease in cell volume as the reticulocytes matured. The density of beta-receptors was unchanged. However, responsiveness to isoproterenol in the reticulocytes when expressed on the basis of cell volume was still nine times greater than the control cells. Thus, maturation of reticulocytes is associated with an uncoupling of persistent beta-receptors from catecholamine responsiveness.  相似文献   

14.
Human 125I-labelled VLDL interacts with rat adipocytes in vitro, with properties typical of a ligand-receptor interaction. This VLDL-receptor interaction is modulated by hormones which are known to change cyclic AMP levels. Norepinephrine and isoproterenol, both of which elevate cycle AMP, increase the binding of VLDL to adipocytes. Dibutyryl-cyclic AMP, a derivative of cyclic AMP, also increases the VLDL binding to adipocytes. Insulin reverses the catecholamine-induced increase in VLDL binding. This parallels insulin's effect on the catecholamine-induced changes in cyclic AMP. Direct addition of cyclic AMP itself increases VLDL binding to adipocyte membranes, a system in which no lipolysis of new protein synthesis occurs. Based on the competition between unlabelled VLDL and 125I-labelled VLDL, we conclude that catecholamines act on adipocytes, and cyclic AMP on membrane fractions, by increasing their capacity rather than their affinity to bind VLDL.  相似文献   

15.
Human 125I-labelled VLDL interacts with rat adipocytes in vitro, with properties typical of a ligand-receptor interaction. This VLDL-receptor interaction is modulated by hormones which are known to change cyclic AMP levels. Norepinephrine and isoproterenol, both of which elevate cyclic AMP, increase the binding of VLDL to adipocytes. Dibutyryl-cyclic AMP, a derivative of cyclic AMP, also increases the VLDL binding to adipocytes. Insulin reverses the catecholamine-induced increase in VLDL binding. This parallels insulin's effect on the catecholamine-induced changes in cyclic AMP. Direct addition of cyclic AMP itself increases VLDL binding to adipocyte membranes, a system in which no lipolysis or new protein synthesis occurs. Based on the competition between unlabelled VLDL and 125I-labelled VLDL, we conclude that catecholamines act on adipocytes, and cyclic AMP on membrane fractions, by increasing their capacity rather than their affinity to bind VLDL.  相似文献   

16.
A graphical method is described that allows the determination of specific radioactivities of radioactively labelled hormones. This method combines the self-displacement technique, plotting bound/free ratios versus mass of unlabelled hormone or total radioactivity of labelled preparation added to the receptor preparation, and the maximal binding capacity of the labelled hormone. The procedure presented herein provides a more realistic specific radioactivity for use in all binding experiments. Application of the method is demonstrated for 125I-labelled ovine prolactin, and data are presented for 125I-labelled human choriogonadotropin and [3H]testosterone.  相似文献   

17.
Production of testosterone by highly purified Leydig cells prepared from rat and mouse testes is compared. Testosterone formation is improved to a higher degree in rat (2.7-fold) than in mouse (1.7-fold) cells by collagenase treatment of the testis compared with mechanical isolation. Mouse Leydig cells respond to exogenous stimuli (choriogonadotropin, dibutyryl cyclic AMP) with 2.4-fold higher testosterone secretion than rat cells. A 1.7-fold increased conversion of androgen precursors to testosterone by mouse compared with rat Leydig cells is demonstrated in static incubations as well as in steady-state superfusion experiments and can be derived from enhanced androstenedione reduction and a less inhibitory effect of progesterone on this process in mouse Leydig cells.  相似文献   

18.
It is reported that steroid synthesis in ovarian cells is affected by epidermal growth factor (EGF). We cultured luteal cells from pregnant rats for 2 days with or without EGF, followed by incubation of the cells with or without stimulants (hCG, forskolin and dibutyryl cyclic AMP) for 5 hours. The levels of progesterone, 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-dihydroprogesterone) and cyclic AMP (cAMP) in the media were assayed. EGF had no effect on the basal levels of progesterone, 20 alpha-dihydroprogesterone and cAMP, but it suppressed these levels which were increased by the stimulants. We investigated binding capacity of [125I]-EGF to ovarian tissue of pregnant rats. Ovarian tissue had specific binding sites for EGF. The maximum number of binding sites was 2.38 fmol/mg tissue and the Kd value was 0.547 nM. It was indicated that EGF modified the reactivity of luteal cells to stimulants; counteracting the tropic effect of gonadotropins. It was shown that this effect of EGF might be exerted through its receptor in luteal cells.  相似文献   

19.
Human astrocytoma cells (EH118MG) respond to catecholamines and prostaglandins with a marked increase in the rate of formation of cyclic AMP. Treatment of EH118MG cells with cholera toxin (10 to 100 ng/ml) for 45 to 60 min caused an increase in cellular cyclic AMP content (5- to 10-fold over basal). Cholera toxin also decreased the K0.5 for isoproterenol 10- to 50-fold and decreased the K0.5 for prostaglandin E1 (PGE1)30- to 100-fold, while increasing the maximal response to PGE1 by 1.5- to 3-fold. Treatment with cholera toxin did not change the K1 values for beta-adrenergic receptor antagonists such as propranolol, alprenolol, and sotalol. Direct binding studies using [125I]iodohydroxybenzylpindolol indicated no significant changes in the number of beta-receptors or in the kinetics of the interaction of the radioligand with receptors after treatment of cells with the toxin. Competition binding studies with propranolol and sotalol revealed no toxin-induced change in Kd values for these antagonists. Treatment with cholera toxin caused only small decreases (2- to 3-fold) in the Kd values for binding of isoproterenol and norepinephrine. It is concluded that cholera toxin has little direct effect on the binding of agonists or antagonists to beta-receptors, but instead increases the efficiency of coupling of receptor and catalytic moieties of adenylate cyclase.  相似文献   

20.
Rat Graafian follicles isolated intact responded to 8-Br-cyclic GMP (0.3 and 1.0 mM) with increased prostaglandin E (PGE) production (4-fold and 8-fold, respectively) during a 6 h incubation. The effect of 8-Br-cyclic GMP was noted after a lag period of 2–4 h. 8-Br-cyclic AMP (1.0 mM) also stimulated PGE production (4-fold increase), while 8-Br-cyclic IMP, 8-Br-5′GMP and 8-Br-5′AMP were inactive in this respect. Actinomycin D (10 μg/ml) and cycloheximide (10 μg/ml) given simultaneously with 8-Br-cyclic GMP prevented the stimulatory effect of the cyclic nucleotide. The results suggest that cyclic GMP induces de novo synthesis of a macromolecular component of the ovarian prostaglandin synthetase system, and that this cyclic nucleotide, along with cyclic AMP, may play a role in the known stimulatory action of luteinizing hormone on follicular prostaglandin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号