首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between cells and implant materials is determined by the surface structure and/or surface composition of the material. In the past years, titanium and titanium alloys have proved their superiority over other implant materials in many clinical applications. This predominant behaviour is caused by a dense passive oxide layer which forms within milliseconds in oxidizing media. Titanium dioxide layers of 100 nm thickness were produced on the surface of cp-titanium grade 2, and on an experimental alloy of high vanadium content (Ti1.5Al25V) as a harmful control. The layers were produced by thermal and anodic oxidation and by coating by means of the sol-gel process. The resulting oxide layers were characterized with respect of their structure and chemical composition. In cell tests (proliferation, MTT, morphology, actin staining), the reaction of the cells was examined. It was shown that the sol-gel-produced titanium oxide layer is able to shield the cells from toxic alloying elements, with the result that the cell reaction is influenced only by the thin titanium oxide surface layer and not by the composition of the bulk material.  相似文献   

2.
The surface state of titanium implants modulates bone response and implant anchorage. This evidence brought implant manufacturers to switch from the standard surface refinements and implement new surface treatments for more bone apposition and enhanced interfacial strength measured by removal torque or push-out tests. Anodic plasma-chemical treatment of implant surfaces is a cost-effective process to modify surface topography and chemistry. This technique is used for structuring connected with a coating of implant surfaces. The aim of our investigations, here, is to texture the implant surface in the nanoscale without coating. Ti disks with different mechanical pre-treatment (grinded, glass blasted) were used as substrate. Micro-plasma texturing was carried out in an aqueous electrolyte. By applying a pulsed DC voltage to the specimen, micro-plasma discharge was generated in the thin steam film between immersed specimen and electrolyte. The electrical process parameter current density was varied. The micro-plasma textured Ti surfaces were characterised optically by SEM and electrochemically by CV- (for testing the corrosion parameters), CA- (to give the enlargement of the real surface) and EIS-measurement in range of 100 kHz-100 microHz. We found that the initial structure of the material surface has small or no influence on the results of the micro-plasma treatment. The properties of the thick oxide layer resulting from the plasma process are influenced by electrical process parameters. After removal of the thick oxide layer a fine, micro- and nanoscaled surface structure of the titanium remains.  相似文献   

3.
The aim of the present study was to determine whether specific surface modifications are capable of improving the biocompatibility of a titanium surface, and whether there is a correlation between the physico-chemical properties of the implant material and its biocompatibility. To this end, the properties of titanium surfaces were modified using various methods or the latter were coated with various materials. Plasma treatments under different atmospheric conditions (N2-plasma, SO2-plasma, acetylene plasma) as well as plasma polymerization were used to affect the biological response. Characterization of the physico-chemical surface properties by means of X-ray photoelectron spectroscopy (XPS), contact angle measurements and the calculation of surface tensions or surface energy provided important information on the interactions at the interface between the implant material and the aqueous environment. The influence of the respective surface modification on cell proliferation, cell viability and the activity of mitochondrial dehydrogenases was evaluated in specific in vitro tests with human gingiva fibroblasts. It was show that different modifications of the titanium samples induce different biological responses of the gingiva fibroblasts. The results confirm the existence of correlations between thermodynamic surface properties and cellular reactions under in vitro conditions.  相似文献   

4.
Amine functionalities were introduced onto the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by applying radio frequency ammonia plasma treatment and wet ethylenediamine treatment. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) for chemical composition and Raman microspectroscopy for the spatial distribution of the chemical moieties. The relative amount of amine functionalities introduced onto the PHBV surface was determined by exposing the treated films to the vapor of trifluoromethylbenzaldehyde (TFBA) prior to XPS analysis. The highest amount of amino groups on the PHBV surface could be introduced by use of ammonia plasma at short treatment times of 5 and 10 s, but no effect of plasma power within the range of 2.5-20 W was observed. Ethylenediamine treatment yielded fewer surface amino groups, and in addition an increase in crystallinity as well as degradation of PHBV was evident from Fourier transform infrared spectroscopy. Raman maps showed that the coverage of amino groups on the PHBV surfaces was patchy with large areas having no amine functionalities.  相似文献   

5.
Surface coating with hydroxyapatite (HA) is a common way to improve the osseointegration of orthopaedic and dental titanium (Ti)-based materials. The main problems with current techniques are changes in composition during heating and poor adhesion to the surface. An alternative method is deposition of HA onto an activated surface out of a solution. The present work studies the surface treatment involving ion implantation of Na into Ti to induce a modification in chemistry and morphology, showing sodium titanate (Na(2)TiO(3)) incorporated within the surface layer with concentration, depth distribution, and morphology depending on the parameters of the ion implantation. Such ion-implanted Ti surfaces actively induce heterogeneous precipitation of HA from a simulated body fluid containing physiological concentrations of calcium and phosphate ions. This is compared with the activation by NaOH etching. The growth of bone forming cells on the pure Na implanted surface is oriented without an increased bone formation. Cell growth on the NaOH etched surface is reduced. After deposition of HA on both surfaces cell the growth pattern was improved.  相似文献   

6.
SF6 plasmas were employed to improve the water repellency of cornstarch films by producing physical as well as chemical modifications of the film surface. Samples were placed in the cathode of a capacitively coupled plasma enhanced chemical vapor deposition (PECVD) reactor. Local surface modifications resulting from SF6 plasma treatment were evaluated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize sulfur and fluoride incorporation on the surface as well as changes in the chemical state of carbon. The results indicate that fluoride and sulfur incorporation is dependent on the self bias, and fluoride is preferentially incorporated at self-biases higher than 100 V. The carbon chemical state changed, and an amorphous-like layer was formed upon treatment. Surface reticulation was observed, indicated by the formation of a structure that resembled starch recrystallization. Optimized treatment conditions led to water contact angles over 120°.  相似文献   

7.
Chemical force microscopy of cellulosic fibers   总被引:2,自引:0,他引:2  
Atomic force microscopy with chemically modified cantilever tips (chemical force microscopy) was used to study the pull-off forces (adhesion forces) on cellulose model surfaces and bleached softwood kraft pulp fibers in aqueous media. It was found that for the –COOH terminated tips, the adhesion forces are dependent on pH, whereas for the –CH3 and –OH terminated tips adhesion is not strongly affected by pH. Comparison between the cellulose model surfaces and cellulosic fibers under our experimental conditions reveal that surface roughness does not affect adhesion strongly. X-ray photoelectron spectroscopy (XPS) and Fourier Transformed Infrared (FTIR) spectroscopy reveal that both substrate surfaces have homogeneous chemical composition. The results show that chemical force microscopy can be used for the chemical characterization of cellulose surfaces at a nano-level.  相似文献   

8.

Objective

This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time.

Materials and Methods

CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples.

Results

The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped.

Conclusions

Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min OPT displayed the roughest surface, sharpest surface profile and best biocompatibility.  相似文献   

9.
Titanium oxide (Ti(O)) xerogel films functionalized by protoporphyrin IX (PPIX) and ferrocene carboxylic acid (FCA) were deposited on indium tin oxide (ITO) electrodes following a sol-gel synthesis. PPIX and FCA were first complexed to titanium oxide precursors, which were then subjected to hydrolysis to obtain a homogenous Ti(O) polymeric network gel doped with PPIX and FCA. The Ti(O) film cast on the ITO electrode has been characterized by UV-Vis absorption, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and cyclic voltammetry. Illumination of the PPIX doped Ti(O) films on the ITO electrode immersed in aqueous electrolytes onsets photoinduced electron transfer reactions, and a cathodic photocurrent was observed in most cases. This photocurrent response was investigated in detail using a kinetic model. Preliminary investigations of oxygen reduction, lithium and proton insertion into the Ti(O) film have also been carried out.  相似文献   

10.
11.
目的:构建一种能结合钛表面的载药纳米粒及钛-载药纳米复合材料的组装和性质研究。方法:(1)多巴胺修饰的非离子表面活性剂多巴胺-泊洛沙姆188(Dop-Poloxamer188)的合成和检测;(2)Dop-Poloxamer188作为表面活性剂、PLGA作为油相基质,制备纳米粒及纳米粒载药和表征;(3)钛片的预处理及钛片与修饰后的纳米粒的结合;(4)纳米粒修饰后的钛表面的表征。结果:新合成的Dop-Poloxamer188在285 nm左右有紫外吸收峰,说明多巴胺成功的修饰在Poloxamer188的两端;Dop-Poloxamer188能和PLGA制备出很好的纳米粒,平均粒径在110 nm左右,PDI小于0.1;多巴胺修饰的纳米粒与钛片通过简单的浸渍过程结合后,通过水接触角、场发射扫面电镜(Fe-SEM)、荧光显微镜、X射线光电子能谱(XPS)等仪器检测都显示多巴胺修饰的纳米粒成功且牢固的修饰在钛片表面。结论:成功达到钛表面的载药纳米粒修饰的目的,为钛种植体的载药系统提供了新的思路和方法。  相似文献   

12.
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological features. The quantitative information, provided by this study about the relation between surface nanoscale morphology and bacterial adhesion points towards the rational design of implant surfaces that control or inhibit bacterial adhesion and biofilm formation.  相似文献   

13.
《IRBM》2007,28(1):42-48
Dental implant-associated infections as peri-implantitis represent one of the major causes of osteointegration failures of oral implants. Adhesion of Porphyromonas gingivalis, one of the bacterial strains mainly involved in such infections, is tightly dependent on the topographical and/or physico-chemical properties of the implant surfaces. As a matter of fact, we showed that the grafting of one bioactive polymer such as poly(sodium styrene sulfonate) onto titanium implant surfaces allowed a sensitive decrease of Staphylococcus aureus adhesion (> 40%). The aim of the study consists in evaluating the adhesion of P. gingivalis onto titanium surfaces grafted with poly(sodium stryrene sulfonate) in order to elaborate implants exhibiting appropriate inhibiting properties towards the adhesion of periodontal pathogens. The grafting of poly(sodium stryrene sulfonate) onto titanium surfaces is carried out in two steps: chemical oxydation of titanium to initiate radical species then grafting of poly(sodium stryrene sulfonate) by radical polymerization. Chemical characterization of the surfaces is achieved by Fourier transformed infrared spectroscopy (FTIR). Bacterial adhesion was studied on grafted and non grafted (control) titanium surfaces, preadsorbed or not by plasmatic proteins. Protein adsorption as well as bacteria adhesion is followed by fluorescence spectroscopy by using proteins or bacteria previously labelled with fluorescence probes; the quantification of adsorption and bacteria adhesion are performed by image analysis. Results showed that protein adsorption is more important (~3 times) and that P. gingivalis adhesion is strongly inhibited (~73%) onto poly(sodium styrene sulfonate) grafted surfaces when compared to titanium control. Moreover, the inhibition of bacterial adhesion on grafted surfaces preadsorbed with plasma proteins is comparable to that observed on grafted surfaces preadsorbed with fibronectin. In conclusion, the obtained results evidenced that the grafting of titanium surface by poly(sodium styrene sulfonate) led to significant inhibition of P. gingivalis adhesion and that this inhibitory activity involved adsorbed proteins. Poly(sodium styrene sulfonate) grafted titanium surfaces present a high interest for the elaboration of oral implants in various clinical dental applications.  相似文献   

14.
Fluorides may affect the oxide layer on titanium surface. Caries preventive mouthwashes or gels contain fluorides and are applied at low pH. The aim of the present work was to study whether various concentrations of fluoride at acidic pH cause changes in the surface structure on the polished region of Ti implants, and alter the adherence and colonization of bacteria. Commercially pure Ti grade 4 discs with a polished surface were treated with a mouthwash containing 0.025% fluoride, a gel containing 1.25% fluoride or a 1% aqueous solution of NaF (pH 4.5). The change of surface roughness of the samples and the colonization of Porphyromonas gingivalis strains were studied by scanning electron microscopy after 5 days of anaerobic incubation. The quantity of the bacterial protein was determined by protein assay analysis. Agents with high fluoride concentration at acidic pH increased the roughness of the Ti surface. A slight increase in the amount of bacteria was found on the surfaces treated with 1% NaF and gel in comparison with the control surface. This study suggested that a high fluoride concentration at acidic pH may hinder the development of a healthy transgingival epithelial junction on Ti implants, due to bacterial colonization.  相似文献   

15.
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer’s and Parkinson’s diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs.  相似文献   

16.
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer’s and Parkinson’s diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs.  相似文献   

17.
The performance of dental or orthopedic implants is closely dependent on surface properties in terms of topography and chemistry. A phosphated carboxymethylcellulose containing one phosphate group for each disaccharide unit was synthesized and used to functionalize titanium oxide surfaces with the aim to improve osseointegration with the host tissue. The modified surfaces were chemically characterized by means of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The investigation of the surface topography was performed by atomic force microscopy measurements before and after the polysaccharide coating. In vitro biological tests using osteoblastlike cells demonstrated that functionalized TiO(2) surfaces modulated cell response, in terms of adhesion, proliferation,and morphology. Phosphated carboxymethylcellulose promoted better cell adhesion and significantly enhanced their proliferation. The morphology of cells was polygonal and more spread on this type of modified surface.These findings suggest that the presence of a phosphate polysaccharide coating promotes osteoblast growth on the surface potentially improving biomaterial osseointegration.  相似文献   

18.
In this paper, wettability behavior of a rough but intrinsically hydrophilic oxide ceramic, formed via simple thermal oxidation of a commercial metallic alloy in laboratory air, has been analyzed. Drop shape analysis (DSA) revealed static water contact angles for the rough ceramic surfaces up to 128° (greater than for Teflon?). We propose the high apparent contact angles to be a result of surface roughening via the morphological changes of the oxide scale with oxidation conditions. The surface morphological changes occurring during the growth of the oxide film resulted in the formation of vertical platelets that ably shifted the wetting behavior from a Wenzel to an unstable Cassie-Baxter state. The platelet morphology of the ceramic resembles the structure of epicuticular waxes on certain species of superhydrophobic leaves. Moreover, surface textures for very short oxidation times were also found to increase hydrophilicity in the scale and reduce the contact angle by imparting a Wenzel state. Various characterization techniques (XRD, XPS, and SEM) were performed in order to detect the crystallographic phases in the scales, analyze carbon content and determine the morphology of the oxide layer. Morphological features of the oxide platelets were quantified and platelet width, spacing and height were found to correlate well with the apparent contact angle trend as a function of oxidation time.  相似文献   

19.
Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.  相似文献   

20.
Raman S  Kumar R 《Biofouling》2011,27(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle-substratum interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号