首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.  相似文献   

2.
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3′-untranslated regions (3′ UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3′ UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3′ UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.  相似文献   

3.
The nicotinic acetylcholine receptor (nAChR) is a well-understood member of the ligand-gated ion channels superfamily. The members of this signaling proteins group, including 5HT3, GABAA, glycine, and ionotropic glutamate receptors, are thought to share common secondary, tertiary, and quaternary structures on the basis of a very high degree of sequence similarity. Despite the absence of X-ray crystallographic data, considerable progress on structural analysis of nAChR was achieved from biochemical, mutational, and electron microscopy data allowing the emergence of a three-dimensional image. Photoaffinity labeling and site-directed mutagenesis gave information on the tertiary structure with respect to the agonist/antagonist binding sites, the ion channel, and its selectivity filter. nAChR is an allosterical protein that undergoes interconversion among several conformational states. Time-resolved photolabeling was used in an attempt to elucidate the structural changes that occur in nAChR on neurotransmitter activation. Tertiary and quaternary rearrangements were found in the cholinergic binding pocket and in the channel lumen, but the structural determinant and the functional link between the binding of agonist and the channel gating remain unknown. Time-resolved photolabeling of the functional activated A state using photosensitive agonists might help in understanding the dynamic process leading to the interconversion of the different states.  相似文献   

4.
An epitope was found on the alpha2-nicotinic isoform of the neuronal nicotinic acetylcholine receptor that would likely form salt bridges with quaternary ammonium compounds and a cation-pi interaction with the pi-cloud of an aromatic ring. Chlorisondamine, a nicotinic antagonist, exerts a long-lasting, if not permanent, blockade of the ion channel gated by acetylcholine. Blocking of the ion channel prevents nicotine from exerting its rewarding effect on the CNS. Chlorisondamine contains two quaternary ammonium groups and a tetrachloroisoindoline ring. We propose that chlorisondamine interacts with an epitope on the alpha2 isoform of the rat neuronal nicotinic receptor (residues 388-402, GEREETEEEEEEEDE), where one or both of the quaternary ammonium groups of chlorisondamine form a salt bridge with dither a glutamic acid side chain or a phosphate group, whereas the tetrachlorobenzene portion of the tetrachloroisoindoline ring interacts with the guanidinium group of arginine in a cation-pi association: In this work, a new way of probing the interaction of a receptor epitope (alpha2) with organic molecules (chlorisondamine and hexachlorobenzene) was undertaken using matrix assisted laser desorption/ionization mass spectrometry.  相似文献   

5.
Li LJ  Liu CG 《生理科学进展》2001,32(4):324-327
从动物模型的研究中发现蛙皮素的镇痛效能与吗啡相当,而镇痛效价比吗啡高200多倍,ABT-594的镇痛效能与蛙皮素相当,而毒副作用明显低于后者,研究发现这两种化合物均是烟碱受体强激动剂,而ABT-594对烟碱受体亚型的选择性明显高于蛙皮素,烟碱受体激动剂激活受体后,引起中枢多种神经递质的释放,可能是其产生镇痛效应的关键所在,其中激活脑干下行性抑制通路起着更为重要的作用。  相似文献   

6.
(S)-Aporphine metho salts with the 1,2,9,10 oxygenation pattern displaced radioligands from recombinant human alpha7 and alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChR) at low micromolar concentrations. The affinity of the nonphenolic glaucine methiodide (4) (vs [(3)H]cytisine) was the lowest at alpha4beta2 nAChR (K(i)=10 microM), and predicentrine methiodide (2) and xanthoplanine iodide (3), with free hydroxyl groups at C-2 or C-9, respectively, had the highest affinity at these receptors (K(i) approximately 1 microM), while the affinity of the diphenolic boldine methiodide (1) was intermediate between these values. At homomeric alpha7 nAChR, xanthoplanine had the highest affinity (K(i)=10 microM) vs [(125)I]alpha-bungarotoxin while the other three compounds displaced the radioligand with K(i) values between 15 and 21 microM. At 100 microM, all four compounds inhibited the responses of these receptors to EC(50) concentrations of ACh. The effects of xanthoplanine iodide (3) were studied in more detail. Xanthoplanine fully inhibited the EC(50) ACh responses of both alpha7 and alpha4beta2 nACh receptors with estimated IC(50) values of 9+/-3 microM (alpha7) and 5+/-0.8 microM (alpha4beta2).  相似文献   

7.
8.
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3?D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2–β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the “transition zone” may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
An extensive phylogenetic analysis of the nicotinic-acetylcholine-receptor subunit gene family has been performed by cladistic and phenetic methods. The conserved parts of amino acid sequences have been analyzed by CLUSTAL V and PHYLIP software. The structure of the genes was also taken in consideration. The results show that a first gene duplication may have occurred before the appearance of Bilateria. Three subfamilies then appeared: I-the neuronal -bungarotoxin binding-site subunits (7, 8); III-the neuronal nicotinic subunits (2–6, 2–4), which also contain the muscle acetylcholine-binding subunit (1); and IV—the muscle non- subunits (1, , ). The Insecta subunits (subfamily II) could be orthologous to family III and IV. Several tissular switches of expression from neuron to muscle and the converse can be inferred from the extant expression of subunits and the reconstructed trees. The diversification of the neuronal nicotinic subfamily begins in the stem lineage of chordates, the last duplications occurring shortly before the onset of the mammalian lineage. Such evolution parallels the increase in complexity of the cholinergic systems.Abbreviations -Bgt -bungarotoxin - ACh acetylcholine - MP maximum of parsimony - MYA million years ago - NJ neighbor-joining - nAChR nicotinic acetylcholine receptor Correspondence to: N. Le Novère  相似文献   

10.
Forty-three bisammonium ganglionic blockers were synthesized to study the structure of the ion channel of nicotinic acetylcholine receptor. The conformational parameters of these blockers were studied, and their effects toward the ganglionic transmission in situ on the sympathetic feline upper cervical ganglions and in vitro on the parasympathetic guinea-pig small intestine ganglions were determined. A model of the binding site for the bisammonium ganglionic blockers in the neuronal ion channel was proposed.  相似文献   

11.
12.
Chick ciliary ganglion neurons have a membrane component that shares an antigenic determinant with the main immunogenic region (MIR) of nicotinic acetylcholine receptors from skeletal muscle and electric organ. Previous studies have shown that the component has many of the properties expected for a ganglionic nicotinic acetylcholine receptor, and that its distribution on the neuron surface in vivo is restricted predominantly to synaptic membrane. Here we report the presence of a large intracellular pool of the putative receptor in embryonic neurons and demonstrate that it is associated with organelles known to comprise the biosynthetic and regulatory pathways of integral plasma membrane proteins. Embryonic chick ciliary ganglia were lightly fixed, saponin-permeabilized, incubated with an anti-MIR monoclonal antibody (mAb) followed by horseradish peroxidase-conjugated secondary antibody, reacted for peroxidase activity, and examined by electron microscopy. Deposits of reaction product were associated with synaptic membrane, small portions of the pseudodendrite surface membrane, most of the rough endoplasmic reticulum, small portions of the nuclear envelope, some Golgi complexes, and a few coated pits, coated vesicles, multivesicular bodies, and smooth-membraned vacuoles. No other labeling was present in the neurons. The labeling was specific in that it was not present when the anti-MIR mAb was replaced with either nonimmune serum or mAbs of different specificity. Chick dorsal root ganglion neurons thought to lack nicotinic acetylcholine receptors were not labeled by the anti-MIR mAb. Substantial intracellular populations have also been reported for the muscle acetylcholine receptor and brain voltage-dependent sodium channel alpha-subunit. This may represent a general pattern for multisubunit membrane proteins during development.  相似文献   

13.
Jones AK  Elgar G  Sattelle DB 《Genomics》2003,82(4):441-451
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission at nerve-muscle junctions and in the brain. However, the complete gene family of nAChRs has not so far been reported for any vertebrate organism. We have identified the complete nAChR gene family from the reference genome of the pufferfish, Fugu rubripes. It consists of 16 alpha and 12 non-alpha candidate subunits, making it the largest vertebrate nAChR gene family known to date. The gene family includes an unusual set of muscle-like nAChR subunits comprising two alpha1s, two beta1s, one delta, one epsilon, and one gamma. One of the beta1 subunits possesses an aspartate residue and N-glycosylation sites hitherto shown to be necessary for delta-subunit function. Potential Fugu orthologs of neuronal nAChR subunits alpha2-4, alpha6, and beta2-4 have been identified. Interestingly, the Fugu alpha5 counterpart appears to be a non-alpha subunit. Fugu possesses an expanded set of alpha7-9-like subunits and no alpha10 ortholog has been found. Two new candidate beta subtypes, designated beta5 and beta6, may represent subunits yet to be found in the human genome. The Fugu nAChR gene structures are considerably more diverse than those of higher vertebrates, with evidence of "intron gain" in many cases. We show, using RT-PCR, that the Fugu nAChR subunits are expressed in a variety of tissues.  相似文献   

14.
15.
Quantitative structure-activity relationships of 34 pyrrolidine-modified nicotine agonists are investigated for their binding affinity toward neuronal nicotinic acetylcholine receptor. The results indicate that a large substituent at the R1, R2, and R3 position is detrimental to the binding affinity. Likewise, a large substituent at the R2 or R3 position as well as a hydrogen bond accepting substituent at the R position are not beneficial to the binding.  相似文献   

16.
We have purified a novel paralytic peptide with 32 AA and a single disulfide bond from the venom of Conus parius, a fish-hunting species. The peptide has the following sequence: TYGIYDAKPOFSCAGLRGGCVLPONLROKFKE-NH2, where O is 4-trans-hydroxyproline. The peptide, designated alphaC-conotoxin PrXA (alphaC-PrXA), is the defining member of a new, structurally distinct family of Conus peptides. The peptide is a competitive nAChR antagonist; all previously characterized conotoxins that competitively antagonize nAChRs are structurally and genetically unrelated. (Most belong to the alpha- and alphaA-conotoxin families.) When administered to mice and fish in vivo, alphaC-PrXA caused paralysis and death. In electrophysiological assays, alphaC-PrXA potently antagonized mouse muscle nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.8 and 3.0 nM for the adult (alpha1beta1 epsilondelta subunits) and fetal (alpha1beta1 gammadelta subunits) muscle nAChR subtypes, respectively. When tested on a variety of ligand-gated and voltage-gated ion channels, alphaC-PrXA proved to be a highly specific inhibitor of the neuromuscular nAChR. The peptide competes with alpha-bungarotoxin for binding at the alpha/delta and alpha/gamma subunit interfaces of the nAChR, with higher affinity for the alpha/delta subunit interface. AlphaC-PrXA is strikingly different from the many conopeptides shown to be nicotinic antagonists; it is most similar in its general biochemical features to the snake toxins known as Waglerins.  相似文献   

17.
We have investigated the effect of magnesium on the single-channel conductance of neuronal nicotinic acetylcholine receptors (nAChRs) in nerve growth-factor treated rat pheochromocytoma (PC12) cells. The patch-clamp technique was used to record single-channel currents from cell attached and excised, outside-out patches in the presence of various internal and external Mg2+ concentrations. Mg2+ reduced the single-channel conductance in a concentration-dependent manner with an IC50 of 9.2 mM for external Mg2+ (inward conductance) and 0.69 mM for external Mg2+ (outward conductance). Both estimated and measured conductances for divalent cation-free CsCl solutions were around 60 pS. We also find that divalent cations are not involved in the inward rectification of whole-cell ACh-induced currents in these cells. Our results imply that the amino acids screened by divalent cations sense electric fields only weakly and are presumably outside the lipid bilayer. They also suggest that the density and the number of charges (or both) differ on either side of the ion pore.  相似文献   

18.
Using positron emission tomography (PET) with a specific and selective radioligand targeting nicotinic acetylcholine receptor (nAChR) would allow us to better understand various nAChR related CNS disorders. The use of radiolabeled nAChR antagonists would provide a much safer pharmacological profile, avoiding most peripheral side effects that might be generated from radiolabeled nAChR agonists even at the tracer level; thus, PET imaging with nAChR antagonists would facilitate clinical application. A potent and selective nAChR antagonist was labeled and characterized with PET in non-human primates. Its high brain uptake, high signal-to-noise ratio, and high specific binding strongly suggest a great potential to carry out imaging studies in humans. In addition, the use of a C-11 radiotracer would allow us to perform multiple PET studies in the same individual within a short time frame. The presence of an iodine atom in the molecule also allows the possibility to label with radioiodine for SPECT studies.  相似文献   

19.
20.
Four flourescein isothiocyanate (FITC) derivatives of Naja naja siamemsis 3 neurotoxin (alpha-toxin), labeled at the epsilon-amino groups of Lys-23, Lys-35, Lys-49, or Lys-69, and a tetramethylrhodamine isothiocyanate (TRITC) derivative, labeled at epsilon-amino group of Lys-23, were prepared and used to analyze the orientation of cobra alpha-toxin on the nicotinic acetylcholine receptor (AcChR) relative to both the plane of the membrane and the central ion channel. Fluorescence-quenching studies of the AcChR-bound FITC derivatives indicated significant solute accessibility to each site of labeling and suggested that none of the sites of FITC labeling is included in the binding surface of the alpha-toxin. Labeling of Lys-23 with TRITC did not affect the affinity of the alpha-toxin toward the AcChR and confirmed, contrary to some previous reports, a minimal role of Lys-23 in the binding surface of the alpha-toxin. Measurements of energy transfer between the lipid-membrane surface and the sites of labeling on receptor-bound alpha-toxin derivatives show that the relative distances of closest approach between the surface of the lipid membrane domain and the sites of labeling are in the order Lys-23 less than or equal to Lys-49 less than Lys-35 less than or equal to Lys-69. Energy transfer between AcChR tryptophans and the sites of labeling of bound derivatives was about 50% greater to Lys-49 than to Lys-23, Lys-35, or Lys-69, suggesting that Lys-49 is closer to receptor tryptophans and to the center of the extracellular domain of the receptor than Lys-23, Lys-35, or Lys-69. Combined with previous observations that the tip of the central loop of the alpha-toxin directly interacts with the AcChR, the above results suggest a model of the approximate orientation of the snake neurotoxins on the receptor. This model shows the tip of the central loop of the toxin directly interacting with the receptor surface and the major axis of the neurotoxin tilting from a perpendicular projection from the membrane. The surface of the alpha-toxin that includes Lys-23 projects away from the central ion channel and the surface that includes Lys-35 and Lys-69 faces the ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号