首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mutations in human cationic trypsinogen (PRSS1) cause autosomal dominant hereditary pancreatitis. Increased intrapancreatic autoactivation of trypsinogen mutants has been hypothesized to initiate the disease. Autoactivation of cationic trypsinogen is proteolytically regulated by chymotrypsin C (CTRC), which mitigates the development of trypsin activity by promoting degradation of both trypsinogen and trypsin. Paradoxically, CTRC also increases the rate of autoactivation by processing the trypsinogen activation peptide to a shorter form. The aim of this study was to investigate the effect of CTRC on the autoactivation of clinically relevant trypsinogen mutants. We found that in the presence of CTRC, trypsinogen mutants associated with classic hereditary pancreatitis (N29I, N29T, V39A, R122C, and R122H) autoactivated at increased rates and reached markedly higher active trypsin levels compared with wild-type cationic trypsinogen. The A16V mutant, known for its variable disease penetrance, exhibited a smaller increase in autoactivation. The mechanistic basis of increased activation was mutation-specific and involved resistance to degradation (N29I, N29T, V39A, R122C, and R122H) and/or increased N-terminal processing by CTRC (A16V and N29I). These observations indicate that hereditary pancreatitis is caused by CTRC-dependent dysregulation of cationic trypsinogen autoactivation, which results in elevated trypsin levels in the pancreas.  相似文献   

2.
Since the identification in 1996 of a "gain of function" missense mutation, R122H, in the cationic trypsinogen gene (PRSS1) as a cause of hereditary pancreatitis, continued screening of this gene in both hereditary and sporadic pancreatitis has found more disease-associated missense mutations than expected. In addition, functional analysis has yielded interesting findings regarding their underlying mechanisms resulting in a gain of trypsin. A critical review of these data, in the context of the complicated biogenesis and complex autoactivation and autolysis of trypsin(ogen), highlights that PRSS1 mutations cause the disease by various mechanisms depending on which biochemical process they affect. The discovery of these mutations also modifies the classical perception of the disease and, more importantly, reveals fascinating new aspects of the molecular evolution and normal physiology of trypsinogen. First, activation peptide of trypsinogen is under strong selection pressure to minimize autoactivation in higher vertebrates. Second, the R122 primary autolysis site has further evolved in mammalian trypsinogens. Third, evolutionary divergence from threonine to asparagine at residue 29 in human cationic trypsinogen provides additional advantage. Accordingly, we tentatively assign, in human cationic trypsinogen, the strongly selected activation peptide as the first-line and the R122 autolysis site as the second-line of the built-in defensive mechanisms against premature trypsin activation within the pancreas, respectively, and the positively selected asparagine at residue 29 as an "amplifier" to the R122 "fail-safe" mechanism.  相似文献   

3.

Background  

R122, the primary autolysis site of the human cationic trypsinogen (PRSS1), constitutes an important "self-destruct" or "fail-safe" defensive mechanism against premature trypsin activation within the pancreas. Disruption of this site by a missense mutation, R122H, was found to cause hereditary pancreatitis. In addition to a c.365G>A (CGC>CAC) single nucleotide substitution, a c.365~366GC>AT (CGC>CAT) gene conversion event in exon 3 of PRSS1 was also found to result in a R122H mutation. This imposes a serious concern on the genotyping of pancreatitis by a widely used polymerase chain reaction-restriction fragment length polymorphism assay, which could only detect the commonest c.365G>A variant.  相似文献   

4.
用基因产物直接测序法对2个遗传性胰腺炎家系中胰腺炎患者(共有4例成员)的胰蛋白酶原基因(cationic trypsinogen,PRSS1)5个外显子进行测序,并分析其各自的临床特征.在4例胰腺炎患者中均出现了PRSS1基因杂合突变,但两家系PRSS1基因突变的位点不同,且临床表现差异较大,其中家系1出现6例糖尿病患者且发病年龄较家系2明显延迟,平均发病年龄为29岁,分析其PRSS1基因发现3号外显子336位碱基存在G→A杂合性突变,为中性突变,表达的氨基酸从赖氨酸(Lys)→赖氨酸(Lys),同时在同一外显子的361位碱基还存在另一个G→A杂合性突变,造成121位的丙氨酸(Ala)被苏氨酸(Thr)所取代,胰蛋白酶原的空间结构发生改变,其与抑制因子的结合位点消失,"保护失败"而产生有活性的胰蛋白酶,造成胰腺自身的消化.而家系2未发现糖尿病患者,其胰腺炎患者的血清肿瘤标志物不增高,先证者(Ⅲ8)在胰腺炎发病过程中表现为CD4 T/CD8 Tcell和乙肝表面抗体(anti-HBs)随病程进展逐渐降低,而Ⅲ7不表现出此现象,分析其PRSS1基因发现3号外显子361位碱基同样存在G→A(c.361G→A)突变,而且在415位还存在一个杂合性突变点T→A(c.415T→A),其中c.415T→A不存在于Ⅲ7.胰蛋白酶原基因存在多种形式的突变,而且与临床表型相关.  相似文献   

5.
The lysosomal cysteine protease cathepsin B is thought to play a central role in intrapancreatic trypsinogen activation and the onset of experimental pancreatitis. Recent in vitro studies have suggested that this mechanism might be of pathophysiological relevance in hereditary pancreatitis, a human inborn disorder associated with mutations in the cationic trypsinogen gene. In the present study evidence is presented that cathepsin B is abundantly present in the secretory compartment of the human exocrine pancreas, as judged by immunogold electron microscopy. Moreover, pro-cathepsin B and mature cathepsin B are both secreted together with trypsinogen and active trypsin into the pancreatic juice of patients with sporadic pancreatitis or hereditary pancreatitis. Finally, cathepsin B- catalyzed activation of recombinant human cationic trypsinogen with hereditary pancreatitis-associated mutations N29I, N29T, or R122H were characterized. In contrast to a previous report, cathepsin B-mediated activation of wild type and all three mutant trypsinogen forms was essentially identical under a wide range of experimental conditions. These observations confirm the presence of active cathepsin B in the human pancreatic secretory pathway and are consistent with the notion that cathepsin B-mediated trypsinogen activation might play a pathogenic role in human pancreatitis. On the other hand, the results clearly demonstrate that hereditary pancreatitis-associated mutations do not lead to increased or decreased trypsinogen activation by cathepsin B. Therefore, mutation-dependent alterations in cathepsin B-induced trypsinogen activation are not the cause of hereditary pancreatitis.  相似文献   

6.
Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult.  相似文献   

7.
Mutations in the human cationic trypsinogen are associated with hereditary pancreatitis. The cDNA coding for human cationic trypsinogen was subcloned into the expression vector pcDNA3. The mutations R122H, N29I, A16V, D22G, and K23R were introduced by site directed mutagenesis. We constructed an expression vector coding for active trypsin by subcloning the cDNA of trypsin lacking the coding region for the trypsin activating peptide behind an appropriate signal peptide. Expression of protein was verified by Western blot and measurement of enzymatic activity. AR4-2J cells were transiently transfected with the different expression vectors and cell viability and intracellular caspase-3 activity were quantified. In contrast to wild-type trypsinogen, expression of active trypsin and mutated trypsinogens reduced cell viability of AR4-2J cells. Expression of trypsin and R122H trypsinogen induced caspase-3 activity. Acinar cells might react to intracellular trypsin activity by triggering apoptosis.  相似文献   

8.
9.
一个遗传性胰腺炎家系中新发现的胰蛋白酶原基因突变   总被引:12,自引:0,他引:12  
刘奇才  程祖建  杨艳  欧启水 《遗传》2007,29(9):1067-1070
对1个遗传性胰腺炎(hereditary pancreatitis, HP)家系中6例成员和120例无亲缘关系健康人的胰蛋白酶原基因(protease serine 1, PRSS1)进行PCR扩增, 产物纯化后测序, 结合受检者的血清肿瘤标志物、糖尿病相关生化指标以及近亲属的一般临床资料进行分析。结果发现4例家系成员PRSS1基因3号外显子区136位碱基存在C→T杂合性突变, 他们的基因型表现为野生型与突变型杂合现象, 另外在先证者PRSS1基因的3号外显子区171位碱基还存在着一个同义突变点(C→T), 而对照组和家系其他成员中未发现此两种突变, 突变阳性患者表现为乳酸、糖基化血红蛋白和糖类肿瘤标志物(CA19-9、CA125)增高。因此, PRSS1基因3号外显子区136位碱基C→T杂合性突变与该家系遗传性胰腺炎有关, 是该家系中遗传性胰腺炎的遗传易感因素。  相似文献   

10.
Hereditary chronic pancreatitis (HCP) is a very rare form of early onset chronic pancreatitis. With the exception of the young age at diagnosis and a slower progression, the clinical course, morphological features and laboratory findings of HCP do not differ from those of patients with alcoholic chronic pancreatitis. As well, diagnostic criteria and treatment of HCP resemble that of chronic pancreatitis of other causes. The clinical presentation is highly variable and includes chronic abdominal pain, impairment of endocrine and exocrine pancreatic function, nausea and vomiting, maldigestion, diabetes, pseudocysts, bile duct and duodenal obstruction, and rarely pancreatic cancer. Fortunately, most patients have a mild disease. Mutations in the PRSS1 gene, encoding cationic trypsinogen, play a causative role in chronic pancreatitis. It has been shown that the PRSS1 mutations increase autocatalytic conversion of trypsinogen to active trypsin, and thus probably cause premature, intrapancreatic trypsinogen activation disturbing the intrapancreatic balance of proteases and their inhibitors. Other genes, such as the anionic trypsinogen (PRSS2), the serine protease inhibitor, Kazal type 1 (SPINK1) and the cystic fibrosis transmembrane conductance regulator (CFTR) have been found to be associated with chronic pancreatitis (idiopathic and hereditary) as well. Genetic testing should only be performed in carefully selected patients by direct DNA sequencing and antenatal diagnosis should not be encouraged. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction. The disease course and prognosis of patients with HCP is unpredictable. Pancreatic cancer risk is elevated. Therefore, HCP patients should strongly avoid environmental risk factors for pancreatic cancer.  相似文献   

11.
Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function.  相似文献   

12.
Mutations Arg117-->His and Asn21-->Ile of the human cationic trypsinogen have been recently identified in patients affected by hereditary pancreatitis (HP). The Arg117-->His substitution is believed to cause pancreatitis by eliminating an essential autolytic cleavage site in trypsin, thereby rendering the protease resistant to inactivation through autolysis. Here we demonstrate that the Arg117-->His mutation also significantly inhibits autocatalytic trypsinogen breakdown under Ca(2+)-free conditions and stabilizes the zymogen form of rat trypsin. Taken together with recent findings demonstrating that the Asn21-->Ile mutation stabilizes rat trypsinogen against autoactivation and consequent autocatalytic degradation, the observations suggest a unifying molecular pathomechanism for HP in which zymogen stabilization plays a central role.  相似文献   

13.
为了探讨 NADH-细胞色素 b5还原酶基因突变引起遗传性高铁血红蛋白血症的分子病理机制 ,研究突变型 ( b5R)蛋白结构和功能的关系 ,用基因重组技术将野生型和突变型 ( C2 0 3Y) b5Rc DNA克隆于 p GEX- 2 T载体 ,在大肠杆菌 BL2 1中诱导表达 .Western印迹鉴定所表达的蛋白为GST- b5R融合蛋白 .应用谷胱甘肽 - Sepharose 4B亲和层析 ,还原型谷胱甘肽洗脱得到纯化的GST- b5R和 GST- b5RC2 0 3Y融合蛋白 .比较 GST- b5R和 GST- b5RC2 0 3Y酶活性及稳定性 ,发现野生型和突变型的酶活性基本相同 .但与野生型酶相比 ,突变型酶对热的稳定性较差 ,对胰蛋白酶更加敏感 .结果提示 ,C2 0 3Y突变可引起蛋白质二级结构改变而导致酶的稳定性下降 .  相似文献   

14.
Hereditary pancreatitis, an autosomal dominant disease with ∼80% penetrance, can be caused by both ‘gain-of-function’ missense and copy number mutations in the cationic trypsinogen gene (PRSS1). Here we demonstrate a heterozygous hybrid PRSS2 (encoding anionic trypsinogen)/PRSS1 gene in a French white family with hereditary pancreatitis, by means of quantitative fluorescent multiplex PCR and RT-PCR analyses. The hybrid gene, in which exons 1 and 2 are derived from PRSS2 and exons 3–5 from PRSS1, apparently resulted from a non-allelic homologous recombination (NAHR) event between the chromosome 7 homologs or sister chromatids during meiosis. Interestingly, this hybrid gene causes the disease through a combination of its inherent ‘double gain-of-function’ effect, acting simultaneously as a ‘quantitative’ copy number mutation and a ‘qualitative’ missense mutation (i.e. the known disease-causing p.N29I mutation). Our finding reveals a previously unknown mechanism causing human inherited disease, enriches the lexicon of human genetic variation and goes beyond the known interaction between copy number variations (CNVs) and single nucleotide substitutions in health and disease. Our finding should also stimulate more interest in analyzing both types of genetic variation whenever one tries to determine the contribution of a specific locus to a given disease phenotype. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Human pancreatic trypsinogens undergo post-translational sulfation on Tyr(154), catalysed by the Golgi-resident enzyme tyrosylprotein sulfotransferase 2. Sequence alignments suggest that the sulfation of Tyr(154) is facilitated by a unique sequence context which is characteristically found in primate trypsinogens. In the search for genetic variants that might alter this sulfation motif, we identified a single nucleotide polymorphism (c.457G>C) in the PRSS2 (serine protease 2, human anionic trypsinogen) gene, which changed Asp(153) to a histidine residue (p.D153H). The p.D153H variant is common in subjects of African origin, with a minor allele frequency of 9.2%, whereas it is absent in subjects of European descent. We demonstrate that Asp(153) is the main determinant of tyrosine sulfation in anionic trypsinogen, as both the natural p.D153H variation and the p.D153N mutation result in a complete loss of trypsinogen sulfation. In contrast, mutation of Asp(156) and Glu(157) only slightly decrease tyrosine sulfation, whereas mutation of Gly(151) and Pro(155) has no effect. With respect to the biological relevance of the p.D153H variant, we found that tyrosine sulfation had no significant effect on the activation of anionic trypsinogen or the catalytic activity and inhibitor sensitivity of anionic trypsin. Taken together with previous studies, the observations of the present study suggest that the primary role of trypsinogen sulfation in humans is to stimulate autoactivation of PRSS1 (serine protease 1, human cationic trypsinogen), whereas the sulfation of anionic trypsinogen is unimportant for normal digestive physiology. As a result, the p.D153H polymorphism which eliminates this modification could become widespread in a healthy population.  相似文献   

16.
Mutations Arg(117) --> His and Asn(21) --> Ile in human trypsinogen-I have been recently associated with hereditary pancreatitis (HP). The Arg(117) --> His substitution is believed to cause pancreatitis by stabilizing trypsin against autolytic degradation, while the mechanism of action of Asn(21) --> Ile has been unknown. In an effort to understand the effect(s) of this mutation, Thr(21) in the highly homologous rat trypsinogen-II was replaced with Asn or Ile, and the recombinant zymogens and their active trypsin forms were studied. Kinetic parameters of all three trypsins were comparable, and the active enzymes suffered autolysis at similar rates, indicating that neither catalytic properties nor proteolytic stability of trypsin are influenced by mutations at position 21. When incubated at pH 8.0, 37 degrees C, pure zymogens underwent autoactivation with concomitant trypsinolytic degradation in a Ca(2+)-dependent fashion. Thus, in the presence of 5 mM Ca(2+), autoactivation and digestion of the zymogens after Arg(117) and Lys(188) were observed, while in the presence of 1 mM EDTA autoactivation and cleavage at Lys(188) were reduced, and zymogenolysis at the Arg(117) site was enhanced. Overall rates of zymogen degradation in [Asn(21)]- and [Ile(21)]trypsinogens were higher in Ca(2+) than in EDTA, while [Thr(21)]trypsinogen demonstrated inverse characteristics. Remarkably, both in the presence and absence of Ca(2+), [Ile(21)]trypsinogen exhibited significantly higher stability against autoactivation and proteolysis than zymogens with Asn(21) or Thr(21). The observations suggest that autocatalytic trypsinogen degradation may be an important defense mechanism against excessive trypsin generation in the pancreas, and trypsinogen stabilization by the Asn(21) --> Ile mutation plays a role in the pathogenesis of HP.  相似文献   

17.

Background

Mutations in genes encoding cationic trypsinogen (PRSS1), pancreatic secretory trypsin inhibitor (SPINK1) and chymotrypsinogen C (CTRC) are associated with chronic pancreatitis. However, in many patients with a familial chronic pancreatitis pattern suggesting a genetic cause, no mutations in either of these genes can be found, indicating that other, still unknown, associated genes exist. In this respect ATP8B1 is an interesting candidate due to its strong expression in the pancreas, its supposed general function in membrane organization and the higher incidence of pancreatitis in patients with ATP8B1 deficiency.

Methods

We analyzed all 27 ATP8B1 coding exons and adjacent non-coding sequences of 507 chronic pancreatitis patients by direct sequencing. Exons that harbored possible relevant variations were subsequently sequenced in 1,027 healthy controls.

Results

In the exonic regions, 5 novel non-synonymous alterations were detected as well as 14 previously described alterations of which some were associated with ATP8B1 deficiency. However, allele frequencies for any of these variations did not significantly differ between patients and controls. Furthermore, several non-synonymous variants were exclusively detected in control subjects and multiple variants in the non-coding sequence were identified with similar frequencies in both groups.

Conclusions

We did not find an association between heterozygous ATP8B1 variants and chronic pancreatitis in our cohort of patients with hereditary and idiopathic chronic pancreatitis.  相似文献   

18.
Trypsin-mediated trypsinogen activation (autoactivation) facilitates digestive zymogen activation in the duodenum but may precipitate pancreatitis if it occurs prematurely in the pancreas. Autoactivation of human cationic trypsinogen is inhibited by a repulsive electrostatic interaction between the unique Asp218 on the surface of cationic trypsin and the conserved tetra-aspartate (Asp19-22) motif in the trypsinogen activation peptide (Nemoda, Z., and Sahin-Tóth, M. (2005) J. Biol. Chem. 280, 29645-29652). Here we describe that this interaction is regulated by chymotrypsin C (caldecrin), which can specifically cleave the Phe18-Asp19 peptide bond in the trypsinogen activation peptide and remove the N-terminal tripeptide. In contrast, chymotrypsin B, elastase 2A, or elastase 3A (proteinase E) are ineffective. Autoactivation of N-terminally truncated cationic trypsinogen is stimulated approximately 3-fold, and this effect is dependent on the presence of Asp218. Because chymotrypsinogen C is activated by trypsin, and chymotrypsin C stimulates trypsinogen activation, these reactions establish a positive feedback mechanism in the digestive enzyme cascade of humans. Furthermore, inappropriate activation of chymotrypsinogen C in the pancreas may contribute to the development of pancreatitis. Consistent with this notion, the pancreatitis-associated mutation A16V in cationic trypsinogen increases the rate of chymotrypsin C-mediated processing of the activation peptide 4-fold and causes accelerated trypsinogen activation in vitro.  相似文献   

19.
Hereditary pancreatitis (HP), an autosomal dominant disorder, has been associated with mutations in the cationic trypsinogen gene. Here we demonstrate that the two most frequent HP mutations, Arg117 --> His and Asn21 --> Ile, significantly enhance autoactivation of human cationic trypsinogen in vitro, in a manner that correlates with the severity of clinical symptoms in HP. In addition, mutation Arg117 --> His inhibits autocatalytic inactivation of trypsin, while mutation Asn21 --> Ile has no such effect. The findings strongly argue that increased trypsinogen activation in the pancreas is the common initiating step in both forms of HP, whereas trypsin stabilization might also contribute to HP associated with the Arg117 --> His mutation.  相似文献   

20.
Mesotrypsin is an enigmatic minor human trypsin isoform, which has been recognized for its peculiar resistance to natural trypsin inhibitors such as soybean trypsin inhibitor (SBTI) or human pancreatic secretory trypsin inhibitor (SPINK1). In search of a biological function, two conflicting theories proposed that due to its inhibitor-resistant activity mesotrypsin could prematurely activate or degrade pancreatic zymogens and thus play a pathogenic or protective role in human pancreatitis. In the present study we ruled out both theories by demonstrating that mesotrypsin was grossly defective not only in inhibitor binding, but also in the activation or degradation of pancreatic zymogens. We found that the restricted ability of mesotrypsin to bind inhibitors or to hydrolyze protein substrates was solely due to a single evolutionary mutation, which changed the serine-protease signature glycine 198 residue to arginine. Remarkably, the same mutation endowed mesotrypsin with a novel and unique function: mesotrypsin rapidly hydrolyzed the reactive-site peptide bond of the Kunitz-type trypsin inhibitor SBTI, and irreversibly degraded the Kazal-type temporary inhibitor SPINK1. The observations suggest that the biological function of human mesotrypsin is digestive degradation of trypsin inhibitors. This mechanism can facilitate the digestion of foods rich in natural trypsin inhibitors. Furthermore, the findings raise the possibility that inappropriate activation of mesotrypsinogen in the pancreas might lower protective SPINK1 levels and contribute to the development of human pancreatitis. In this regard, it is noteworthy that the well known pathological trypsinogen activator cathepsin B exhibited a preference for the activation of mesotrypsinogen of all three human trypsinogen isoforms, suggesting a biochemical mechanism for mesotrypsinogen activation in pancreatic acinar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号